Spaces:
Sleeping
Sleeping
File size: 9,429 Bytes
4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
let ws;
function initializeComparisonCharts() {
const lossData = [{
name: 'Model A Loss',
x: [],
y: [],
type: 'scatter'
}, {
name: 'Model B Loss',
x: [],
y: [],
type: 'scatter'
}];
const accuracyData = [{
name: 'Model A Accuracy',
x: [],
y: [],
type: 'scatter'
}, {
name: 'Model B Accuracy',
x: [],
y: [],
type: 'scatter'
}];
Plotly.newPlot('comparison-loss-plot', lossData, {
title: 'Loss Comparison',
xaxis: { title: 'Iterations' },
yaxis: { title: 'Loss' }
});
Plotly.newPlot('comparison-accuracy-plot', accuracyData, {
title: 'Accuracy Comparison',
xaxis: { title: 'Iterations' },
yaxis: { title: 'Accuracy (%)' }
});
}
async function compareModels() {
const config = {
model1: {
kernels: [
parseInt(document.getElementById('model1_kernel1').value),
parseInt(document.getElementById('model1_kernel2').value),
parseInt(document.getElementById('model1_kernel3').value)
],
optimizer: document.getElementById('model1_optimizer').value,
batch_size: parseInt(document.getElementById('model1_batch_size').value),
epochs: parseInt(document.getElementById('model1_epochs').value)
},
model2: {
kernels: [
parseInt(document.getElementById('model2_kernel1').value),
parseInt(document.getElementById('model2_kernel2').value),
parseInt(document.getElementById('model2_kernel3').value)
],
optimizer: document.getElementById('model2_optimizer').value,
batch_size: parseInt(document.getElementById('model2_batch_size').value),
epochs: parseInt(document.getElementById('model2_epochs').value)
}
};
// Show comparison progress section
document.getElementById('comparison-progress').classList.remove('hidden');
initializeComparisonCharts();
try {
const response = await fetch('/api/train_compare', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(config)
});
const data = await response.json();
if (data.status === 'success') {
displayComparisonResults(data);
alert('Model comparison completed successfully!');
}
} catch (error) {
console.error('Error:', error);
alert('Error during model comparison. Please check console for details.');
}
}
function displayComparisonResults(data) {
const logsDiv = document.getElementById('comparison-logs');
logsDiv.innerHTML = `
<div class="comparison-model">
<h4>Model A</h4>
<p>Final Loss: ${data.model1_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
<p>Final Accuracy: ${data.model1_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
<p>Model Name: ${data.model1_results.model_name}</p>
</div>
<div class="comparison-model">
<h4>Model B</h4>
<p>Final Loss: ${data.model2_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
<p>Final Accuracy: ${data.model2_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
<p>Model Name: ${data.model2_results.model_name}</p>
</div>
`;
}
// Add these helper functions to get the parameters
function getModelParameters() {
try {
const params = {
model_a: {
block1: parseInt(document.getElementById('model1_kernel1').value),
block2: parseInt(document.getElementById('model1_kernel2').value),
block3: parseInt(document.getElementById('model1_kernel3').value),
optimizer: document.getElementById('model1_optimizer').value,
batch_size: parseInt(document.getElementById('model1_batch_size').value),
epochs: parseInt(document.getElementById('model1_epochs').value)
},
model_b: {
block1: parseInt(document.getElementById('model2_kernel1').value),
block2: parseInt(document.getElementById('model2_kernel2').value),
block3: parseInt(document.getElementById('model2_kernel3').value),
optimizer: document.getElementById('model2_optimizer').value,
batch_size: parseInt(document.getElementById('model2_batch_size').value),
epochs: parseInt(document.getElementById('model2_epochs').value)
}
};
// Validate that all values are present and valid
for (const model of ['model_a', 'model_b']) {
for (const [key, value] of Object.entries(params[model])) {
if (value === null || value === undefined || Number.isNaN(value)) {
throw new Error(`Invalid value for ${model} ${key}: ${value}`);
}
}
}
console.log('Collected and validated model parameters:', params);
return params;
} catch (error) {
console.error('Error in getModelParameters:', error);
throw error;
}
}
function getDatasetParameters() {
return {
batch_size: parseInt(document.getElementById('model1_batch_size').value), // Using model1's batch size for dataset
shuffle: true
};
}
// Update the WebSocket event listener
document.getElementById('startComparisonBtn').addEventListener('click', function() {
console.log('Start Comparison button clicked');
// Validate form inputs before proceeding
const formInputs = document.querySelectorAll('input[type="number"], select'); // Added select for optimizer
let isValid = true;
let formValues = {};
formInputs.forEach(input => {
console.log(`Checking input ${input.id}: ${input.value}`);
formValues[input.id] = input.value;
if (!input.value) {
console.error(`Missing value for ${input.id}`);
isValid = false;
}
});
console.log('Form values:', formValues); // Log all form values
if (!isValid) {
alert('Please fill in all required fields');
return;
}
// Show comparison progress section
document.getElementById('comparison-progress').classList.remove('hidden');
console.log('Initialized comparison charts');
initializeComparisonCharts();
console.log('Attempting WebSocket connection...');
const ws = new WebSocket(`ws://${window.location.host}/ws/compare`);
ws.onopen = function() {
console.log('WebSocket connection established');
const parameters = {
model_params: getModelParameters(),
dataset_params: getDatasetParameters()
};
const message = {
action: 'start_training',
parameters: parameters
};
console.log('Preparing to send message:', JSON.stringify(message, null, 2));
// Add a small delay to ensure WebSocket is ready
setTimeout(() => {
try {
ws.send(JSON.stringify(message));
console.log('Message sent successfully');
} catch (error) {
console.error('Error sending message:', error);
alert('Error sending training parameters. Please check console for details.');
}
}, 100);
};
ws.onmessage = function(event) {
console.log('Received WebSocket message:', event.data);
try {
const data = JSON.parse(event.data);
console.log('Parsed message data:', data);
updateTrainingProgress(data);
} catch (error) {
console.error('Error processing message:', error);
}
};
ws.onerror = function(error) {
console.error('WebSocket error:', error);
alert('Connection error occurred. Please check console for details.');
};
ws.onclose = function(event) {
console.log('WebSocket connection closed. Code:', event.code, 'Reason:', event.reason);
};
});
// Add the updateTrainingProgress function
function updateTrainingProgress(data) {
if (data.status === 'training') {
// Update loss plot
Plotly.extendTraces('comparison-loss-plot', {
y: [[data.metrics.loss]],
}, [data.model === 'A' ? 0 : 1]);
// Update accuracy plot
Plotly.extendTraces('comparison-accuracy-plot', {
y: [[data.metrics.accuracy]],
}, [data.model === 'A' ? 0 : 1]);
// Update progress text
const progressText = document.getElementById('training-progress-text');
progressText.textContent = `Training ${data.model === 'A' ? 'Model A' : 'Model B'} - Epoch ${data.epoch + 1}`;
} else if (data.status === 'complete') {
// Handle training completion
document.getElementById('training-progress-text').textContent = 'Training Complete!';
displayComparisonResults(data.metrics);
} else if (data.status === 'error') {
// Handle error
console.error('Training error:', data.message);
alert(`Training error: ${data.message}`);
}
} |