Spaces:
Sleeping
Sleeping
File size: 7,162 Bytes
4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 30d27e9 4c1a791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
let ws;
let lossChart;
let accuracyChart;
function showTrainingForm(type) {
const singleForm = document.getElementById('single-model-form');
const compareForm = document.getElementById('compare-models-form');
if (type === 'single') {
singleForm.classList.remove('hidden');
compareForm.classList.add('hidden');
} else {
singleForm.classList.add('hidden');
compareForm.classList.remove('hidden');
}
}
function initializeCharts() {
const lossData = [{
name: 'Training Loss',
x: [],
y: [],
type: 'scatter'
}, {
name: 'Validation Loss',
x: [],
y: [],
type: 'scatter'
}];
const accuracyData = [{
name: 'Training Accuracy',
x: [],
y: [],
type: 'scatter'
}, {
name: 'Validation Accuracy',
x: [],
y: [],
type: 'scatter'
}];
Plotly.newPlot('loss-plot', lossData, {
title: 'Training and Validation Loss',
xaxis: { title: 'Iterations' },
yaxis: { title: 'Loss' }
});
Plotly.newPlot('accuracy-plot', accuracyData, {
title: 'Training and Validation Accuracy',
xaxis: { title: 'Iterations' },
yaxis: { title: 'Accuracy (%)' }
});
}
function updateCharts(data) {
const iteration = data.epoch * data.batch;
Plotly.extendTraces('loss-plot', {
x: [[iteration], [iteration]],
y: [[data.train_loss], [data.val_loss]]
}, [0, 1]);
Plotly.extendTraces('accuracy-plot', {
x: [[iteration], [iteration]],
y: [[data.train_acc], [data.val_acc]]
}, [0, 1]);
// Update training logs
const logsDiv = document.getElementById('training-logs');
logsDiv.innerHTML = `
<p>Epoch: ${data.epoch + 1}</p>
<p>Training Loss: ${data.train_loss.toFixed(4)}</p>
<p>Training Accuracy: ${data.train_acc.toFixed(2)}%</p>
<p>Validation Loss: ${data.val_loss.toFixed(4)}</p>
<p>Validation Accuracy: ${data.val_acc.toFixed(2)}%</p>
`;
}
async function trainSingleModel() {
const config = {
kernels: [
parseInt(document.getElementById('kernel1').value),
parseInt(document.getElementById('kernel2').value),
parseInt(document.getElementById('kernel3').value)
],
optimizer: document.getElementById('optimizer').value,
batch_size: parseInt(document.getElementById('batch_size').value),
epochs: parseInt(document.getElementById('epochs').value)
};
// Show progress section and initialize charts
document.getElementById('training-progress').classList.remove('hidden');
initializeCharts();
// Connect to WebSocket
ws = new WebSocket(`ws://${window.location.host}/ws/train`);
ws.onmessage = function(event) {
const data = JSON.parse(event.data);
updateCharts(data);
};
try {
const response = await fetch('/api/train_single', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(config)
});
const data = await response.json();
if (data.status === 'success') {
alert('Training completed successfully!');
}
} catch (error) {
console.error('Error:', error);
alert('Error during training. Please check console for details.');
}
}
async function compareModels() {
const config = {
model1: {
kernels: [
parseInt(document.getElementById('model1_kernel1').value),
parseInt(document.getElementById('model1_kernel2').value),
parseInt(document.getElementById('model1_kernel3').value)
],
optimizer: document.getElementById('model1_optimizer').value,
batch_size: parseInt(document.getElementById('model1_batch_size').value),
epochs: parseInt(document.getElementById('model1_epochs').value)
},
model2: {
kernels: [
parseInt(document.getElementById('model2_kernel1').value),
parseInt(document.getElementById('model2_kernel2').value),
parseInt(document.getElementById('model2_kernel3').value)
],
optimizer: document.getElementById('model2_optimizer').value,
batch_size: parseInt(document.getElementById('model2_batch_size').value),
epochs: parseInt(document.getElementById('model2_epochs').value)
}
};
// Show comparison progress section
document.getElementById('comparison-progress').classList.remove('hidden');
initializeComparisonCharts();
try {
const response = await fetch('/api/train_compare', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(config)
});
const data = await response.json();
if (data.status === 'success') {
displayComparisonResults(data);
alert('Model comparison completed successfully!');
}
} catch (error) {
console.error('Error:', error);
alert('Error during model comparison. Please check console for details.');
}
}
function initializeComparisonCharts() {
const lossData = [{
name: 'Model A Loss',
x: [],
y: [],
type: 'scatter'
}, {
name: 'Model B Loss',
x: [],
y: [],
type: 'scatter'
}];
const accuracyData = [{
name: 'Model A Accuracy',
x: [],
y: [],
type: 'scatter'
}, {
name: 'Model B Accuracy',
x: [],
y: [],
type: 'scatter'
}];
Plotly.newPlot('comparison-loss-plot', lossData, {
title: 'Loss Comparison',
xaxis: { title: 'Iterations' },
yaxis: { title: 'Loss' }
});
Plotly.newPlot('comparison-accuracy-plot', accuracyData, {
title: 'Accuracy Comparison',
xaxis: { title: 'Iterations' },
yaxis: { title: 'Accuracy (%)' }
});
}
function displayComparisonResults(data) {
const logsDiv = document.getElementById('comparison-logs');
logsDiv.innerHTML = `
<div class="comparison-model">
<h4>Model A</h4>
<p>Final Loss: ${data.model1_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
<p>Final Accuracy: ${data.model1_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
<p>Model Name: ${data.model1_results.model_name}</p>
</div>
<div class="comparison-model">
<h4>Model B</h4>
<p>Final Loss: ${data.model2_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
<p>Final Accuracy: ${data.model2_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
<p>Model Name: ${data.model2_results.model_name}</p>
</div>
`;
}
function displayResults(data) {
const resultsDiv = document.getElementById('training-results');
// Display training results
} |