Spaces:
Runtime error
Runtime error
File size: 1,716 Bytes
a6a79a1 e3a805b a6a79a1 78d4870 02bfcfa 5a17bb9 02bfcfa 5a17bb9 78d4870 a7863c7 78d4870 5a17bb9 a6a79a1 5a17bb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import os
os.system("""
apt-get update && apt-get install -y libsndfile1 ffmpeg
pip install Cython
pip install nemo_toolkit['all']""")
import nemo.collections.asr as nemo_asr
from transformers import pipeline
import numpy as np
import gradio as gr
def respond(message, chat_history):
bot_message = message
chat_history.append((message, bot_message))
return "", chat_history
def transcribe(audio):
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
result = asr_model({"sampling_rate": sr, "raw": y})["text"]
return result
# asr_model_id = "openai/whisper-small.en"
# asr_model = pipeline("automatic-speech-recognition", model=asr_model_id)
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name="nvidia/parakeet-ctc-0.6b")
text = asr_model.transcribe(["./Samples/Sample_audios/test.wav"])
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(
"""
# HKU Canteen VA
""")
gr.Markdown(f"{text}")
va = gr.Chatbot(container=False)
with gr.Row(): # text input
text_input = gr.Textbox(placeholder="Ask me anything...", container=False, scale=1)
submit_btn = gr.Button("Submit", scale=0)
# with gr.Row(): # audio input
# recording = gr.Microphone(show_download_button=False, container=False)
with gr.Row(): # button toolbar
clear = gr.ClearButton([text_input, va])
text_input.submit(respond, [text_input, va], [text_input, va], queue=False)
submit_btn.click(respond, [text_input, va], [text_input, va], queue=False)
# recording.stop_recording(transcribe, [recording], [text_input]).then(respond, [text_input, va], [text_input, va], queue=False)
if __name__ == "__main__":
demo.launch() |