File size: 5,615 Bytes
f0d1783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f0bf2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr

from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, OpenAIEmbeddings
from langchain.vectorstores import Pinecone
import pinecone
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"


PINECONE_KEY = os.environ.get("PINECONE_KEY", "")
PINECONE_ENV = os.environ.get("PINECONE_ENV", "asia-northeast1-gcp")
PINECONE_INDEX = os.environ.get("PINECONE_INDEX", '3gpp-r16')

EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "hkunlp/instructor-large")
EMBEDDING_LOADER = os.environ.get("EMBEDDING_LOADER", "HuggingFaceInstructEmbeddings")
EMBEDDING_LIST = ["HuggingFaceInstructEmbeddings", "HuggingFaceEmbeddings"]

# return top-k text chunks from vector store
TOP_K_DEFAULT = 15
TOP_K_MAX = 30
SCORE_DEFAULT = 0.33

global g_db
g_db = None

def init_db(emb_name, emb_loader, db_api_key, db_env, db_index):

    embeddings = eval(emb_loader)(model_name=emb_name)

    pinecone.init(api_key     = db_api_key,
                  environment = db_env)

    global g_db

    g_db = Pinecone.from_existing_index(index_name = db_index,
                                      embedding  = embeddings)
    return str(g_db)


def get_db():
    return g_db


def remove_duplicates(documents, score_min):
    seen_content = set()
    unique_documents = []
    for (doc, score) in documents:
        if (doc.page_content not in seen_content) and (score >= score_min):
            seen_content.add(doc.page_content)
            unique_documents.append(doc)
    return unique_documents


def get_data(query, top_k, score):
    if not query:
        return "Please init db in configuration"

    print("Use db: " + str(g_db))

    docs = g_db.similarity_search_with_score(query = query,
                                             k=top_k)
    #docsearch = db.as_retriever(search_kwargs={'k':top_k})
    #docs = docsearch.get_relevant_documents(query)
    udocs = remove_duplicates(docs, score)
    return udocs

with gr.Blocks(
    title = "3GPP Database",
    theme = "Base",
    css = """.bigbox {
    min-height:250px;
}
""") as demo:
    with gr.Tab("Matching"):
        with gr.Accordion("Vector similarity"):
            with gr.Row():
                with gr.Column():
                    top_k = gr.Slider(1,
                                      TOP_K_MAX,
                                      value=TOP_K_DEFAULT,
                                      step=1,
                                      label="Vector similarity top_k",
                                      interactive=True)
                with gr.Column():
                    score = gr.Slider(0.01,
                                      0.99,
                                      value=SCORE_DEFAULT,
                                      step=0.01,
                                      label="Vector similarity score",
                                      interactive=True)

        with gr.Row():
             inp = gr.Textbox(label = "Input",
                              placeholder="What are you looking for?")
             out = gr.Textbox(label = "Output")

        btn_run = gr.Button("Run", variant="primary")

    with gr.Tab("Configuration"):
        with gr.Row():
            loading = gr.Textbox(get_db, max_lines=1, show_label=False)
            btn_init = gr.Button("Init")
        with gr.Accordion("Embedding"):
            with gr.Row():
                with gr.Column():
                    emb_textbox = gr.Textbox(
                        label = "Embedding Model",
                        # show_label = False,
                        value = EMBEDDING_MODEL,
                        placeholder = "Paste Your Embedding Model Repo on HuggingFace",
                        lines=1,
                        interactive=True,
                        type='email')

                with gr.Column():
                    emb_dropdown = gr.Dropdown(
                        EMBEDDING_LIST,
                        value=EMBEDDING_LOADER,
                        multiselect=False,
                        interactive=True,
                        label="Embedding Loader")

        with gr.Accordion("Pinecone Database"):
            with gr.Row():
                db_api_textbox = gr.Textbox(
                    label = "Pinecone API Key",
                    # show_label = False,
                    value = PINECONE_KEY,
                    placeholder = "Paste Your Pinecone API Key (xx-xx-xx-xx-xx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='password')
            with gr.Row():
                db_env_textbox = gr.Textbox(
                    label = "Pinecone Environment",
                    # show_label = False,
                    value = PINECONE_ENV,
                    placeholder = "Paste Your Pinecone Environment (xx-xx-xx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='email')
                db_index_textbox = gr.Textbox(
                    label = "Pinecone Index",
                    # show_label = False,
                    value = PINECONE_INDEX,
                    placeholder = "Paste Your Pinecone Index (xxxx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='email')

    btn_init.click(fn=init_db, inputs=[emb_textbox, emb_dropdown, db_api_textbox, db_env_textbox, db_index_textbox], outputs=loading)
    btn_run.click(fn=get_data, inputs=[inp, top_k, score], outputs=out)

if __name__ == "__main__":
    demo.queue()
    demo.launch(inbrowser = True)