Spaces:
Sleeping
Sleeping
File size: 20,215 Bytes
9146dbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/nateraw/voice-cloning/blob/main/training_so_vits_svc_fork.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jIcNJ5QfDsV_"
},
"outputs": [],
"source": [
"# %%capture\n",
"! pip install git+https://github.com/nateraw/so-vits-svc-fork@main\n",
"! pip install openai-whisper yt-dlp huggingface_hub demucs"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6uZAhUPOhFv9"
},
"source": [
"---\n",
"\n",
"# Restart runtime\n",
"\n",
"After running the cell above, you'll need to restart the Colab runtime because we installed a different version of numpy.\n",
"\n",
"`Runtime -> Restart runtime`\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "DROusQatF-wF"
},
"outputs": [],
"source": [
"from huggingface_hub import login\n",
"\n",
"login()"
]
},
{
"cell_type": "markdown",
"source": [
"## Settings"
],
"metadata": {
"id": "yOM9WWmmRqTA"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5oTDjDEKFz3W"
},
"outputs": [],
"source": [
"CHARACTER = \"kanye\"\n",
"DO_EXTRACT_VOCALS = False\n",
"MODEL_REPO_ID = \"dog/kanye\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BFd_ly1P_5Ht"
},
"source": [
"## Data Preparation\n",
"\n",
"Prepare a data.csv file here with `ytid,start,end` as the first line (they're the expected column names). Then, prepare a training set given YouTube IDs and their start and end segment times in seconds. Try to pick segments that have dry vocal only, as that'll provide the best results.\n",
"\n",
"An example is given below for Kanye West."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rBrtgDtWmhRb"
},
"outputs": [],
"source": [
"%%writefile data.csv\n",
"ytid,start,end\n",
"lkK4de9nbzQ,0,137\n",
"gXU9Am2Seo0,30,69\n",
"gXU9Am2Seo0,94,135\n",
"iVgrhWvQpqU,0,55\n",
"iVgrhWvQpqU,58,110\n",
"UIV-q-gneKA,85,99\n",
"UIV-q-gneKA,110,125\n",
"UIV-q-gneKA,127,141\n",
"UIV-q-gneKA,173,183\n",
"GmlyYCGE9ak,0,102\n",
"x-7aWcPmJ60,25,43\n",
"x-7aWcPmJ60,47,72\n",
"x-7aWcPmJ60,98,113\n",
"DK2LCIzIBrU,0,56\n",
"DK2LCIzIBrU,80,166\n",
"_W56nZk0fCI,184,224"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cxxp4uYoC0aG"
},
"outputs": [],
"source": [
"import subprocess\n",
"from pathlib import Path\n",
"import librosa\n",
"from scipy.io import wavfile\n",
"import numpy as np\n",
"from demucs.pretrained import get_model, DEFAULT_MODEL\n",
"from demucs.apply import apply_model\n",
"import torch\n",
"import csv\n",
"import whisper\n",
"\n",
"\n",
"def download_youtube_clip(video_identifier, start_time, end_time, output_filename, num_attempts=5, url_base=\"https://www.youtube.com/watch?v=\"):\n",
" status = False\n",
"\n",
" output_path = Path(output_filename)\n",
" if output_path.exists():\n",
" return True, \"Already Downloaded\"\n",
"\n",
" command = f\"\"\"\n",
" yt-dlp --quiet --no-warnings -x --audio-format wav -f bestaudio -o \"{output_filename}\" --download-sections \"*{start_time}-{end_time}\" \"{url_base}{video_identifier}\"\n",
" \"\"\".strip()\n",
"\n",
" attempts = 0\n",
" while True:\n",
" try:\n",
" output = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)\n",
" except subprocess.CalledProcessError as err:\n",
" attempts += 1\n",
" if attempts == num_attempts:\n",
" return status, err.output\n",
" else:\n",
" break\n",
"\n",
" status = output_path.exists()\n",
" return status, \"Downloaded\"\n",
"\n",
"\n",
"def split_long_audio(model, filepaths, character_name, save_dir=\"data_dir\", out_sr=44100):\n",
" if isinstance(filepaths, str):\n",
" filepaths = [filepaths]\n",
"\n",
" for file_idx, filepath in enumerate(filepaths):\n",
"\n",
" save_path = Path(save_dir) / character_name\n",
" save_path.mkdir(exist_ok=True, parents=True)\n",
"\n",
" print(f\"Transcribing file {file_idx}: '{filepath}' to segments...\")\n",
" result = model.transcribe(filepath, word_timestamps=True, task=\"transcribe\", beam_size=5, best_of=5)\n",
" segments = result['segments']\n",
" \n",
" wav, sr = librosa.load(filepath, sr=None, offset=0, duration=None, mono=True)\n",
" wav, _ = librosa.effects.trim(wav, top_db=20)\n",
" peak = np.abs(wav).max()\n",
" if peak > 1.0:\n",
" wav = 0.98 * wav / peak\n",
" wav2 = librosa.resample(wav, orig_sr=sr, target_sr=out_sr)\n",
" wav2 /= max(wav2.max(), -wav2.min())\n",
"\n",
" for i, seg in enumerate(segments):\n",
" start_time = seg['start']\n",
" end_time = seg['end']\n",
" wav_seg = wav2[int(start_time * out_sr):int(end_time * out_sr)]\n",
" wav_seg_name = f\"{character_name}_{file_idx}_{i}.wav\"\n",
" out_fpath = save_path / wav_seg_name\n",
" wavfile.write(out_fpath, rate=out_sr, data=(wav_seg * np.iinfo(np.int16).max).astype(np.int16))\n",
"\n",
"\n",
"def extract_vocal_demucs(model, filename, out_filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):\n",
" wav, sr = librosa.load(filename, mono=False, sr=sr)\n",
" wav = torch.tensor(wav)\n",
" ref = wav.mean(0)\n",
" wav = (wav - ref.mean()) / ref.std()\n",
" sources = apply_model(\n",
" model,\n",
" wav[None],\n",
" device=device,\n",
" shifts=shifts,\n",
" split=split,\n",
" overlap=overlap,\n",
" progress=True,\n",
" num_workers=jobs\n",
" )[0]\n",
" sources = sources * ref.std() + ref.mean()\n",
"\n",
" wav = sources[-1]\n",
" wav = wav / max(1.01 * wav.abs().max(), 1)\n",
" wavfile.write(out_filename, rate=sr, data=wav.numpy().T)\n",
" return out_filename\n",
"\n",
"\n",
"def create_dataset(\n",
" clips_csv_filepath = \"data.csv\",\n",
" character = \"somebody\",\n",
" do_extract_vocals = False,\n",
" whisper_size = \"medium\",\n",
" # Where raw yt clips will be downloaded to\n",
" dl_dir = \"downloads\",\n",
" # Where actual data will be organized\n",
" data_dir = \"dataset_raw\",\n",
" **kwargs\n",
"):\n",
" dl_path = Path(dl_dir) / character\n",
" dl_path.mkdir(exist_ok=True, parents=True)\n",
" if do_extract_vocals:\n",
" demucs_model = get_model(DEFAULT_MODEL)\n",
"\n",
" with Path(clips_csv_filepath).open() as f:\n",
" reader = csv.DictReader(f)\n",
" for i, row in enumerate(reader):\n",
" outfile_path = dl_path / f\"{character}_{i:04d}.wav\"\n",
" download_youtube_clip(row['ytid'], row['start'], row['end'], outfile_path)\n",
" if do_extract_vocals:\n",
" extract_vocal_demucs(demucs_model, outfile_path, outfile_path)\n",
"\n",
" filenames = sorted([str(x) for x in dl_path.glob(\"*.wav\")])\n",
" whisper_model = whisper.load_model(whisper_size)\n",
" split_long_audio(whisper_model, filenames, character, data_dir) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "D9GrcDUKEGro"
},
"outputs": [],
"source": [
"\"\"\"\n",
"Here, we override config to have num_workers=0 because\n",
"of a limitation in HF Spaces Docker /dev/shm.\n",
"\"\"\"\n",
"\n",
"import json\n",
"from pathlib import Path\n",
"import multiprocessing\n",
"\n",
"def update_config(config_file=\"configs/44k/config.json\"):\n",
" config_path = Path(config_file)\n",
" data = json.loads(config_path.read_text())\n",
" data['train']['batch_size'] = 32\n",
" data['train']['eval_interval'] = 500\n",
" data['train']['num_workers'] = multiprocessing.cpu_count()\n",
" data['train']['persistent_workers'] = True\n",
" data['train']['push_to_hub'] = True\n",
" data['train']['repo_id'] = MODEL_REPO_ID # tuple(data['spk'])[0]\n",
" data['train']['private'] = True\n",
" config_path.write_text(json.dumps(data, indent=2, sort_keys=False))"
]
},
{
"cell_type": "markdown",
"source": [
"## Run all Preprocessing Steps"
],
"metadata": {
"id": "aF6OZkTZRzhj"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OAPnD3xKD_Gw"
},
"outputs": [],
"source": [
"create_dataset(character=CHARACTER, do_extract_vocals=DO_EXTRACT_VOCALS)\n",
"! svc pre-resample\n",
"! svc pre-config\n",
"! svc pre-hubert -fm crepe\n",
"update_config()"
]
},
{
"cell_type": "markdown",
"source": [
"## Training"
],
"metadata": {
"id": "VpyGazF6R3CE"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "MByHpf_wEByg"
},
"outputs": [],
"source": [
"from __future__ import annotations\n",
"\n",
"import os\n",
"import re\n",
"import warnings\n",
"from logging import getLogger\n",
"from multiprocessing import cpu_count\n",
"from pathlib import Path\n",
"from typing import Any\n",
"\n",
"import lightning.pytorch as pl\n",
"import torch\n",
"from lightning.pytorch.accelerators import MPSAccelerator, TPUAccelerator\n",
"from lightning.pytorch.loggers import TensorBoardLogger\n",
"from lightning.pytorch.strategies.ddp import DDPStrategy\n",
"from lightning.pytorch.tuner import Tuner\n",
"from torch.cuda.amp import autocast\n",
"from torch.nn import functional as F\n",
"from torch.utils.data import DataLoader\n",
"from torch.utils.tensorboard.writer import SummaryWriter\n",
"\n",
"import so_vits_svc_fork.f0\n",
"import so_vits_svc_fork.modules.commons as commons\n",
"import so_vits_svc_fork.utils\n",
"\n",
"from so_vits_svc_fork import utils\n",
"from so_vits_svc_fork.dataset import TextAudioCollate, TextAudioDataset\n",
"from so_vits_svc_fork.logger import is_notebook\n",
"from so_vits_svc_fork.modules.descriminators import MultiPeriodDiscriminator\n",
"from so_vits_svc_fork.modules.losses import discriminator_loss, feature_loss, generator_loss, kl_loss\n",
"from so_vits_svc_fork.modules.mel_processing import mel_spectrogram_torch\n",
"from so_vits_svc_fork.modules.synthesizers import SynthesizerTrn\n",
"\n",
"from so_vits_svc_fork.train import VitsLightning, VCDataModule\n",
"\n",
"LOG = getLogger(__name__)\n",
"torch.set_float32_matmul_precision(\"high\")\n",
"\n",
"\n",
"from pathlib import Path\n",
"\n",
"from huggingface_hub import create_repo, upload_folder, login, list_repo_files, delete_file\n",
"\n",
"# if os.environ.get(\"HF_TOKEN\"):\n",
"# login(os.environ.get(\"HF_TOKEN\"))\n",
"\n",
"\n",
"class HuggingFacePushCallback(pl.Callback):\n",
" def __init__(self, repo_id, private=False, every=100):\n",
" self.repo_id = repo_id\n",
" self.private = private\n",
" self.every = every\n",
"\n",
" def on_validation_epoch_end(self, trainer, pl_module):\n",
" self.repo_url = create_repo(\n",
" repo_id=self.repo_id,\n",
" exist_ok=True,\n",
" private=self.private\n",
" )\n",
" self.repo_id = self.repo_url.repo_id\n",
" if pl_module.global_step == 0:\n",
" return\n",
" print(f\"\\n🤗 Pushing to Hugging Face Hub: {self.repo_url}...\")\n",
" model_dir = pl_module.hparams.model_dir\n",
" upload_folder(\n",
" repo_id=self.repo_id,\n",
" folder_path=model_dir,\n",
" path_in_repo=\".\",\n",
" commit_message=\"🍻 cheers\",\n",
" ignore_patterns=[\"*.git*\", \"*README.md*\", \"*__pycache__*\"],\n",
" )\n",
" ckpt_pattern = r'^(D_|G_)\\d+\\.pth$'\n",
" todelete = []\n",
" repo_ckpts = [x for x in list_repo_files(self.repo_id) if re.match(ckpt_pattern, x) and x not in [\"G_0.pth\", \"D_0.pth\"]]\n",
" local_ckpts = [x.name for x in Path(model_dir).glob(\"*.pth\") if re.match(ckpt_pattern, x.name)]\n",
" to_delete = set(repo_ckpts) - set(local_ckpts)\n",
"\n",
" for fname in to_delete:\n",
" print(f\"🗑 Deleting {fname} from repo\")\n",
" delete_file(fname, self.repo_id)\n",
"\n",
"\n",
"def train(\n",
" config_path: Path | str, model_path: Path | str, reset_optimizer: bool = False\n",
"):\n",
" config_path = Path(config_path)\n",
" model_path = Path(model_path)\n",
"\n",
" hparams = utils.get_backup_hparams(config_path, model_path)\n",
" utils.ensure_pretrained_model(model_path, hparams.model.get(\"type_\", \"hifi-gan\"))\n",
"\n",
" datamodule = VCDataModule(hparams)\n",
" strategy = (\n",
" (\n",
" \"ddp_find_unused_parameters_true\"\n",
" if os.name != \"nt\"\n",
" else DDPStrategy(find_unused_parameters=True, process_group_backend=\"gloo\")\n",
" )\n",
" if torch.cuda.device_count() > 1\n",
" else \"auto\"\n",
" )\n",
" LOG.info(f\"Using strategy: {strategy}\")\n",
" \n",
" callbacks = []\n",
" if hparams.train.push_to_hub:\n",
" callbacks.append(HuggingFacePushCallback(hparams.train.repo_id, hparams.train.private))\n",
" if not is_notebook():\n",
" callbacks.append(pl.callbacks.RichProgressBar())\n",
" if callbacks == []:\n",
" callbacks = None\n",
"\n",
" trainer = pl.Trainer(\n",
" logger=TensorBoardLogger(\n",
" model_path, \"lightning_logs\", hparams.train.get(\"log_version\", 0)\n",
" ),\n",
" # profiler=\"simple\",\n",
" val_check_interval=hparams.train.eval_interval,\n",
" max_epochs=hparams.train.epochs,\n",
" check_val_every_n_epoch=None,\n",
" precision=\"16-mixed\"\n",
" if hparams.train.fp16_run\n",
" else \"bf16-mixed\"\n",
" if hparams.train.get(\"bf16_run\", False)\n",
" else 32,\n",
" strategy=strategy,\n",
" callbacks=callbacks,\n",
" benchmark=True,\n",
" enable_checkpointing=False,\n",
" )\n",
" tuner = Tuner(trainer)\n",
" model = VitsLightning(reset_optimizer=reset_optimizer, **hparams)\n",
"\n",
" # automatic batch size scaling\n",
" batch_size = hparams.train.batch_size\n",
" batch_split = str(batch_size).split(\"-\")\n",
" batch_size = batch_split[0]\n",
" init_val = 2 if len(batch_split) <= 1 else int(batch_split[1])\n",
" max_trials = 25 if len(batch_split) <= 2 else int(batch_split[2])\n",
" if batch_size == \"auto\":\n",
" batch_size = \"binsearch\"\n",
" if batch_size in [\"power\", \"binsearch\"]:\n",
" model.tuning = True\n",
" tuner.scale_batch_size(\n",
" model,\n",
" mode=batch_size,\n",
" datamodule=datamodule,\n",
" steps_per_trial=1,\n",
" init_val=init_val,\n",
" max_trials=max_trials,\n",
" )\n",
" model.tuning = False\n",
" else:\n",
" batch_size = int(batch_size)\n",
" # automatic learning rate scaling is not supported for multiple optimizers\n",
" \"\"\"if hparams.train.learning_rate == \"auto\":\n",
" lr_finder = tuner.lr_find(model)\n",
" LOG.info(lr_finder.results)\n",
" fig = lr_finder.plot(suggest=True)\n",
" fig.savefig(model_path / \"lr_finder.png\")\"\"\"\n",
"\n",
" trainer.fit(model, datamodule=datamodule)\n",
"\n",
"if __name__ == '__main__':\n",
" train('configs/44k/config.json', 'logs/44k')"
]
},
{
"cell_type": "markdown",
"source": [
"## Train Cluster Model"
],
"metadata": {
"id": "b2vNCDrSR8Xo"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "DBBEx-6Y1sOy"
},
"outputs": [],
"source": [
"! svc train-cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "y_qYMuNY1tlm"
},
"outputs": [],
"source": [
"from huggingface_hub import upload_file\n",
"\n",
"upload_file(path_or_fileobj=\"/content/logs/44k/kmeans.pt\", repo_id=MODEL_REPO_ID, path_in_repo=\"kmeans.pt\")"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"machine_shape": "hm",
"provenance": [],
"authorship_tag": "ABX9TyOQeFSvxop9rlCaglNlNoXI",
"include_colab_link": true
},
"gpuClass": "premium",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |