File size: 4,635 Bytes
7576d10
d2aa7b7
f7db529
7576d10
ff9df39
 
 
cc37e2b
ff9df39
 
cd0d6f2
eddda5a
7576d10
b73d81d
cd0d6f2
5bbee66
6e8c2ef
 
4d701c0
eddda5a
e213266
 
7576d10
8353801
cd0d6f2
 
8353801
 
02cdb95
8353801
 
cd0d6f2
8353801
f3a075d
02cdb95
f3a075d
cd0d6f2
f3a075d
 
7576d10
 
f3a075d
 
 
 
7576d10
f3a075d
 
7576d10
f3a075d
cd0d6f2
 
 
f3a075d
cd0d6f2
7576d10
f3a075d
7576d10
f3a075d
7576d10
f3a075d
 
7576d10
f3a075d
 
 
 
 
 
 
 
 
 
 
 
7576d10
 
 
f3a075d
7576d10
f3a075d
 
 
7576d10
f3a075d
7576d10
 
cd0d6f2
 
 
02cdb95
 
 
7576d10
f3a075d
 
780307f
 
 
 
 
 
 
 
 
 
 
 
f3a075d
7576d10
 
 
 
 
 
f3a075d
cd0d6f2
02cdb95
cd0d6f2
 
02cdb95
7576d10
f3a075d
cd0d6f2
 
 
 
02cdb95
7576d10
cd0d6f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import os 
import subprocess

from huggingface_hub import snapshot_download


REPO_ID='SharkSpace/videos_examples'
snapshot_download(repo_id=REPO_ID, token= os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')


if os.getenv('SYSTEM') == 'spaces':

    subprocess.call('pip install -U openmim'.split())
    subprocess.call('pip install python-dotenv'.split())
    subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
    subprocess.call('mim install mmcv>=2.0.0'.split())
    subprocess.call('mim install mmengine'.split())
    subprocess.call('mim install mmdet'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
    subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
    

import cv2 
import dotenv 
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame
import os
import pathlib

from time import time

def analyze_video(x, skip_frames = 5, frame_rate_out = 8):
    print(x)

    #Define path to saved images
    path = '/tmp/test/'
    os.makedirs(path, exist_ok=True)
    
    # Define name of current video as number of videos in path
    n_videos_in_path = len(os.listdir(path))
    path = f'{path}{n_videos_in_path}'
    os.makedirs(path, exist_ok=True)
    
    # Define name of output video
    outname = f'{path}_processed.mp4'
    
    if os.path.exists(outname):
        print('video already processed')
        return outname
    
    cap = cv2.VideoCapture(x)
    counter = 0
    
    while(cap.isOpened()):
        start = time()
        ret, frame = cap.read()
        print(f'read time: {time()-start}')
        
        if ret==True:
            if counter % skip_frames == 0:
                name = os.path.join(path,f'{counter:05d}.png')
                start = time()
                frame = inference_frame(frame)
                print(f'inference time: {time()-start}')
                # write the flipped frame
                start = time()
                cv2.imwrite(name, frame)
                print(f'write time: {time()-start}')
            else: 
                pass
            print(counter)
            counter +=1 
        else:
            break
    
    # Release everything if job is finished
    cap.release()

    # Create video from predicted images
    print(path)
    os.system(f'''ffmpeg -framerate {frame_rate_out} -pattern_type glob -i '{path}/*.png'  -c:v libx264 -pix_fmt yuv420p {outname} -y''')
    return outname

def set_example_image(example: list) -> dict:
    return gr.Video.update(value=example[0])

def show_video(example: list) -> dict:
    return gr.Video.update(value=example[0])
    
with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
    gr.Markdown("Alpha Demo of the Sharkpatrol Oceanlife Detector.")
    with gr.Tab("Preloaded Examples"):
        
        with gr.Row():
            video_example = gr.Video(source='upload',include_audio=False,stream=True)
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*rgb.mp4'))
            example_preds = gr.Dataset(components=[video_example],
                                    samples=[[path.as_posix()]
                                             for path in paths])
            example_preds.click(fn=show_video,
                         inputs=example_preds,
                         outputs=video_example)

    with gr.Tab("Test your own Video"):
        with gr.Row():
            video_input = gr.Video(source='upload',include_audio=False)
            #video_input.style(witdh='50%',height='50%')
            video_output = gr.Video()
            #video_output.style(witdh='50%',height='50%')
        
        video_button = gr.Button("Analyze your Video")
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
            example_images = gr.Dataset(components=[video_input],
                                    samples=[[path.as_posix()]
                                             for path in paths if 'videos_side_by_side' not in str(path)])

    video_button.click(analyze_video, inputs=video_input, outputs=video_output)

    example_images.click(fn=set_example_image,
                         inputs=example_images,
                         outputs=video_input)

demo.queue()
#if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))