File size: 7,199 Bytes
cd0d6f2
8c6ecf8
 
eddda5a
7576d10
b73d81d
cd0d6f2
5bbee66
6e8c2ef
 
4d701c0
eddda5a
e213266
7576d10
8c6ecf8
 
 
8353801
cd0d6f2
 
8353801
 
02cdb95
021ea63
5636b5c
 
2c2657f
 
 
 
8353801
cd0d6f2
5636b5c
f3a075d
02cdb95
98d74ef
 
 
021ea63
2c2657f
 
 
 
 
98d74ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b76394e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d74ef
 
b76394e
 
8c6ecf8
 
021ea63
8c6ecf8
 
 
 
 
 
 
5636b5c
8c6ecf8
 
5636b5c
8c6ecf8
5636b5c
8c6ecf8
 
5636b5c
8c6ecf8
 
b76394e
 
2c2657f
411e82d
2c2657f
 
 
 
98d74ef
 
 
 
b76394e
98d74ef
b76394e
 
 
 
 
 
a10edf8
2c2657f
 
b76394e
 
 
 
 
 
8c6ecf8
 
5636b5c
8c6ecf8
2c2657f
5636b5c
2c2657f
a10edf8
8c6ecf8
c52dc72
b76394e
2c2657f
98d74ef
b76394e
a10edf8
 
98d74ef
8c6ecf8
 
 
 
 
780307f
2c2657f
7576d10
 
3a4aab1
b76394e
3a4aab1
b76394e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

import subprocess
import os  
if os.getenv('SYSTEM') == 'spaces':

    subprocess.call('pip install -U openmim'.split())
    subprocess.call('pip install python-dotenv'.split())
    subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
    subprocess.call('mim install mmcv>=2.0.0'.split())
    subprocess.call('mim install mmengine'.split())
    subprocess.call('mim install mmdet'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
    subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())

import gradio as gr

from huggingface_hub import snapshot_download
import cv2 
import dotenv 
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame,inference_frame_serial
from inference import inference_frame_par_ready
from inference import process_frame
from inference import classes
from inference import class_sizes_lower
from metrics import process_results_for_plot
from metrics import prediction_dashboard
import os
import pathlib
import multiprocessing as mp
from time import time

if not os.path.exists('videos_example'):
    REPO_ID='SharkSpace/videos_examples'
    snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')

theme = gr.themes.Soft(
    primary_hue="sky",
    neutral_hue="slate",
)



def add_border(frame, color = (255, 0, 0), thickness = 2):
    # Add a red border to the image
    relative = max(frame.shape[0],frame.shape[1])
    top = int(relative*0.025)
    bottom = int(relative*0.025)
    left = int(relative*0.025)
    right =  int(relative*0.025)
    # Add the border to the image
    bordered_image = cv2.copyMakeBorder(frame, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
    
    return bordered_image 
    
def overlay_text_on_image(image, text_list, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=0.5, font_thickness=1, margin=10, color=(255, 255, 255)):
    relative = min(image.shape[0],image.shape[1])
    y0, dy = margin, int(relative*0.1) # start y position and line gap
    for i, line in enumerate(text_list):
        y = y0 + i * dy
        text_width, _ = cv2.getTextSize(line, font, font_size, font_thickness)[0]
        cv2.putText(image, line, (image.shape[1] - text_width - margin, y), font, font_size, color, font_thickness, lineType=cv2.LINE_AA)
    return image

def draw_cockpit(frame, top_pred,cnt):
    # Bullet points:
    high_danger_color = (255,0,0)
    low_danger_color = yellowgreen = (154,205,50)
    shark_sighted = 'Shark Detected: ' + str(top_pred['shark_sighted'])
    human_sighted = 'Number of Humans: ' + str(top_pred['human_n'])
    shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
    shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])
    danger_level = 'Danger Level: ' 
    danger_level += 'High' if top_pred['dangerous_dist'] else 'Low'
    danger_color = 'orangered' if top_pred['dangerous_dist'] else 'yellowgreen'
    # Create a list of strings to plot
    strings = [shark_sighted, human_sighted, shark_size_estimate, shark_weight_estimate, danger_level]
    relative = max(frame.shape[0],frame.shape[1])
    if top_pred['shark_sighted'] and top_pred['dangerous_dist'] and cnt%2 == 0:
        relative = max(frame.shape[0],frame.shape[1])
        frame  = add_border(frame, color=high_danger_color, thickness=int(relative*0.025))
    elif top_pred['shark_sighted'] and not top_pred['dangerous_dist'] and cnt%2 == 0:
         relative = max(frame.shape[0],frame.shape[1])
         frame  = add_border(frame, color=low_danger_color, thickness=int(relative*0.025))
    overlay_text_on_image(frame, strings, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=relative*0.0007, font_thickness=1, margin=int(relative*0.05), color=(255, 255, 255))
    return frame
    
    

def process_video(input_video, out_fps = 'auto', skip_frames = 7):
    cap = cv2.VideoCapture(input_video)

    output_path = "output.mp4"
    if out_fps != 'auto' and type(out_fps) == int:
        fps = int(out_fps)
    else:
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        if out_fps == 'auto':
            fps = int(fps / skip_frames)

    width  = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))

    iterating, frame = cap.read()
    cnt = 0
    
    while iterating:
        if (cnt % skip_frames) == 0:
            print('starting Frame: ', cnt)
            # flip frame vertically
            display_frame, result = inference_frame_serial(frame)
            
            #print(result)
            top_pred = process_results_for_plot(predictions = result.numpy(),
                                                classes = classes,
                                                class_sizes = class_sizes_lower)
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            prediction_frame = cv2.cvtColor(display_frame, cv2.COLOR_BGR2RGB)
            
            
            #frame = cv2.resize(frame, (int(width), int(height)))
            
            if cnt*skip_frames %2==0 and top_pred['shark_sighted']: 
                #prediction_frame = cv2.resize(prediction_frame, (int(width), int(height)))
                frame =prediction_frame
             
            if  top_pred['shark_sighted']: 
                frame = draw_cockpit(frame, top_pred,cnt*skip_frames)
            video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
            pred_dashbord = prediction_dashboard(top_pred = top_pred)
            #print('sending frame')
            print('finalizing frame:',cnt)
            print(pred_dashbord.shape)
            print(frame.shape)
            print(prediction_frame.shape)
            yield prediction_frame,frame , None, pred_dashbord
        print('overall count ', cnt)
        cnt += 1
        iterating, frame = cap.read()
    
    video.release()
    yield None, None, output_path, None

with gr.Blocks(theme=theme) as demo:
    with gr.Row().style(equal_height=True,height='25%'):
        input_video = gr.Video(label="Input")
        processed_frames = gr.Image(label="Shark Engine")
        output_video = gr.Video(label="Output Video")
        dashboard = gr.Image(label="Dashboard")
    
    with gr.Row():
        
        original_frames = gr.Image(label="Original Frame").style( height=650)
        
    with gr.Row():
        paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
        samples=[[path.as_posix()] for path in paths if 'raw_videos'  in str(path)]
        examples = gr.Examples(samples, inputs=input_video)
        process_video_btn = gr.Button("Process Video")

    process_video_btn.click(process_video, input_video, [processed_frames, original_frames, output_video, dashboard])

demo.queue()
if os.getenv('SYSTEM') == 'spaces':
    demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
else: 
    demo.launch()