File size: 6,838 Bytes
8c6ecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import os 
import subprocess

from huggingface_hub import snapshot_download


REPO_ID='SharkSpace/videos_examples'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')


if os.getenv('SYSTEM') == 'spaces':

    subprocess.call('pip install -U openmim'.split())
    subprocess.call('pip install python-dotenv'.split())
    subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
    subprocess.call('mim install mmcv>=2.0.0'.split())
    subprocess.call('mim install mmengine'.split())
    subprocess.call('mim install mmdet'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
    subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
    

import cv2 
import dotenv 
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame,inference_frame_serial
from inference import inference_frame_par_ready
from inference import process_frame
import os
import pathlib
import multiprocessing as mp

from time import time


def analize_video_serial(x):
    print(x)
    path = '/tmp/test/'
    os.makedirs(path, exist_ok=True)
    videos = len(os.listdir(path))
    path = f'{path}{videos}'
    os.makedirs(path, exist_ok=True)
    outname = f'{path}_processed.mp4'
    if os.path.exists(outname):
        print('video already processed')
        return outname
    cap = cv2.VideoCapture(x)
    counter = 0
    import pdb;pdb.set_trace()
    while(cap.isOpened()):
        ret, frame = cap.read()
        yield None, frame 
        if ret==True:
            name = os.path.join(path,f'{counter:05d}.png')
            frame = inference_frame_serial(frame)
            # write the flipped frame
            
            cv2.imwrite(name, frame)
            counter +=1
           
            #yield None,frame 
        else:
            break
    # Release everything if job is finished
    print(path)
    os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png'  -c:v libx264 -pix_fmt yuv420p {outname} -y''')
    return outname,frame 





def analyze_video_parallel(x, skip_frames = 5, 
                           frame_rate_out = 8, batch_size = 16):
    print(x)

    #Define path to saved images
    path = '/tmp/test/'
    os.makedirs(path, exist_ok=True)
    
    # Define name of current video as number of videos in path
    n_videos_in_path = len(os.listdir(path))
    path = f'{path}{n_videos_in_path}'
    os.makedirs(path, exist_ok=True)
    
    # Define name of output video
    outname = f'{path}_processed.mp4'
    
    if os.path.exists(outname):
        print('video already processed')
        return outname
    
    cap = cv2.VideoCapture(x)
    counter = 0
    pred_results_all = []
    frames_all = []
    while(cap.isOpened()):
        frames = []
        #start = time()
        
        while len(frames) < batch_size:
            #start = time()
            ret, frame = cap.read()
            if ret == False:
                break
            elif counter % skip_frames == 0:
                frames.append(frame)
            counter += 1

        #print(f'read time: {time()-start}')

        frames_all.extend(frames)

        # Get timing for inference
        start = time()
        print('len frames passed: ', len(frames))
        
        if len(frames) > 0:
            pred_results = inference_frame_par_ready(frames)
            print(f'inference time: {time()-start}')
            pred_results_all.extend(pred_results)

        # break while loop when return of the image reader is False
        if ret == False:
            break

    print('exited prediction loop')
    # Release everything if job is finished
    cap.release()
        
    start = time()
    pool = mp.Pool(mp.cpu_count()-2)
    pool_out = pool.map(process_frame, 
                        list(zip(pred_results_all, 
                                    frames_all, 
                                    [i for i in range(len(pred_results_all))])))
    pool.close()
    print(f'pool time: {time()-start}')
    
    start = time()
    counter = 0
    for pool_out_tmp in pool_out:
        name = os.path.join(path,f'{counter:05d}.png')
        cv2.imwrite(name, pool_out_tmp)
        counter +=1
        yield None,pool_out_tmp
        
    print(f'write time: {time()-start}')

    # Create video from predicted images
    print(path)
    os.system(f'''ffmpeg -framerate {frame_rate_out} -pattern_type glob -i '{path}/*.png'  -c:v libx264 -pix_fmt yuv420p {outname} -y''')
    return outname, pool_out_tmp
  

def set_example_image(example: list) -> dict:
    return gr.Video.update(value=example[0])

def show_video(example: list) -> dict:
    return gr.Video.update(value=example[0])
    
with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
    gr.Markdown("Alpha Demo of the Sharkpatrol Oceanlife Detector.")
    with gr.Tab("Preloaded Examples"):
        
        with gr.Row():
            video_example = gr.Video(source='upload',include_audio=False,stream=True)
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*rgb.mp4'))
            example_preds = gr.Dataset(components=[video_example],
                                    samples=[[path.as_posix()]
                                             for path in paths])
            example_preds.click(fn=show_video,
                         inputs=example_preds,
                         outputs=video_example)

    with gr.Tab("Test your own Video"):
        with gr.Row():
            video_input = gr.Video(source='upload',include_audio=False)
            #video_input.style(witdh='50%',height='50%')
            image_temp = gr.Image()
        with gr.Row():
            video_output = gr.Video()
            
            #video_output.style(witdh='50%',height='50%')
        
        video_button = gr.Button("Analyze your Video")
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
            example_images = gr.Dataset(components=[video_input],
                                    samples=[[path.as_posix()]
                                             for path in paths if 'raw_videos'  in str(path)])

    video_button.click(analize_video_serial, inputs=video_input, outputs=[video_output,image_temp])

    example_images.click(fn=set_example_image,
                         inputs=example_images,
                         outputs=video_input)

         
demo.queue()
if os.getenv('SYSTEM') == 'spaces':
    demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
else: 
    demo.launch()