File size: 7,432 Bytes
7576d10
d2aa7b7
f7db529
7576d10
ff9df39
 
 
cc37e2b
ff9df39
 
cd0d6f2
eddda5a
7576d10
b73d81d
cd0d6f2
5bbee66
6e8c2ef
 
4d701c0
eddda5a
e213266
 
7576d10
8353801
cd0d6f2
 
8353801
 
02cdb95
8353801
5636b5c
 
8353801
cd0d6f2
5636b5c
8353801
f3a075d
02cdb95
f3a075d
cd0d6f2
f3a075d
 
5636b5c
7576d10
f3a075d
 
 
 
7576d10
f3a075d
 
7576d10
f3a075d
cd0d6f2
 
 
f3a075d
cd0d6f2
7576d10
f3a075d
7576d10
5636b5c
f3a075d
5636b5c
 
 
 
 
 
f3a075d
 
5636b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a075d
5636b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7576d10
f3a075d
5636b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a075d
 
7576d10
f3a075d
7576d10
5636b5c
7576d10
cd0d6f2
 
 
02cdb95
 
 
7576d10
f3a075d
 
780307f
 
 
 
 
 
 
 
 
 
 
 
f3a075d
7576d10
 
 
 
 
 
f3a075d
cd0d6f2
02cdb95
cd0d6f2
 
02cdb95
7576d10
5636b5c
cd0d6f2
 
 
 
02cdb95
7576d10
cd0d6f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import os 
import subprocess

from huggingface_hub import snapshot_download


REPO_ID='SharkSpace/videos_examples'
snapshot_download(repo_id=REPO_ID, token= os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')


if os.getenv('SYSTEM') == 'spaces':

    subprocess.call('pip install -U openmim'.split())
    subprocess.call('pip install python-dotenv'.split())
    subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
    subprocess.call('mim install mmcv>=2.0.0'.split())
    subprocess.call('mim install mmengine'.split())
    subprocess.call('mim install mmdet'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
    subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
    

import cv2 
import dotenv 
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame
from inference import inference_frame_par_ready
from inference import process_frame
import os
import pathlib
import multiprocessing as mp

from time import time

def analyze_video(x, skip_frames = 5, frame_rate_out = 8):
    print(x)

    #Define path to saved images
    path = 'tmp/test/'
    os.makedirs(path, exist_ok=True)
    
    # Define name of current video as number of videos in path
    n_videos_in_path = len(os.listdir(path))
    path = f'{path}{n_videos_in_path}'
    os.makedirs(path, exist_ok=True)
    
    # Define name of output video
    outname = f'{path}_processed.mp4'
    
    if os.path.exists(outname):
        print('video already processed')
        return outname
    
    cap = cv2.VideoCapture(x)
    counter = 0
    
    while(cap.isOpened()):
        frames = []
        start = time()
        for i in range(16):
            start = time()
            ret, frame = cap.read()
            frames.append(frame)
            if ret == False:
                break
        print(f'read time: {time()-start}')
        
        #if ret==True:

            #if counter % skip_frames == 0:
        name = os.path.join(path,f'{counter:05d}.png')
        # Get timing for inference
        start = time()
        frames = inference_frame(frames)
        print(f'inference time: {time()-start}')
        # write the flipped frame
        
        start = time()
        for frame in frames:
            name = os.path.join(path,f'{counter:05d}.png')
            cv2.imwrite(name, frame)
            counter +=1
        print(f'write time: {time()-start}')
        # else: 
            
        # print(counter)
        # counter +=1
        # else:
        #     break
    
    # Release everything if job is finished
    cap.release()

    # Create video from predicted images
    print(path)
    os.system(f'''ffmpeg -framerate {frame_rate_out} -pattern_type glob -i '{path}/*.png'  -c:v libx264 -pix_fmt yuv420p {outname} -y''')
    return outname


def analyze_video_parallel(x, skip_frames = 5, 
                           frame_rate_out = 8, batch_size = 16):
    print(x)

    #Define path to saved images
    path = '/tmp/test/'
    os.makedirs(path, exist_ok=True)
    
    # Define name of current video as number of videos in path
    n_videos_in_path = len(os.listdir(path))
    path = f'{path}{n_videos_in_path}'
    os.makedirs(path, exist_ok=True)
    
    # Define name of output video
    outname = f'{path}_processed.mp4'
    
    if os.path.exists(outname):
        print('video already processed')
        return outname
    
    cap = cv2.VideoCapture(x)
    counter = 0
    pred_results_all = []
    frames_all = []
    while(cap.isOpened()):
        frames = []
        #start = time()
        
        while len(frames) < batch_size:
            #start = time()
            ret, frame = cap.read()
            if ret == False:
                break
            elif counter % skip_frames == 0:
                frames.append(frame)
            counter += 1

        #print(f'read time: {time()-start}')

        frames_all.extend(frames)

        # Get timing for inference
        start = time()
        print('len frames passed: ', len(frames))
        
        if len(frames) > 0:
            pred_results = inference_frame_par_ready(frames)
            print(f'inference time: {time()-start}')
            pred_results_all.extend(pred_results)

        # break while loop when return of the image reader is False
        if ret == False:
            break

    print('exited prediction loop')
    # Release everything if job is finished
    cap.release()
        
    start = time()
    pool = mp.Pool(mp.cpu_count()-2)
    pool_out = pool.map(process_frame, 
                        list(zip(pred_results_all, 
                                    frames_all, 
                                    [i for i in range(len(pred_results_all))])))
    pool.close()
    print(f'pool time: {time()-start}')
    
    start = time()
    counter = 0
    for pool_out_tmp in pool_out:
        name = os.path.join(path,f'{counter:05d}.png')
        cv2.imwrite(name, pool_out_tmp)
        counter +=1
    print(f'write time: {time()-start}')

    # Create video from predicted images
    print(path)
    os.system(f'''ffmpeg -framerate {frame_rate_out} -pattern_type glob -i '{path}/*.png'  -c:v libx264 -pix_fmt yuv420p {outname} -y''')
    return outname
  

def set_example_image(example: list) -> dict:
    return gr.Video.update(value=example[0])

def show_video(example: list) -> dict:
    return gr.Video.update(value=example[0])
    
with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
    gr.Markdown("Alpha Demo of the Sharkpatrol Oceanlife Detector.")
    with gr.Tab("Preloaded Examples"):
        
        with gr.Row():
            video_example = gr.Video(source='upload',include_audio=False,stream=True)
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*rgb.mp4'))
            example_preds = gr.Dataset(components=[video_example],
                                    samples=[[path.as_posix()]
                                             for path in paths])
            example_preds.click(fn=show_video,
                         inputs=example_preds,
                         outputs=video_example)

    with gr.Tab("Test your own Video"):
        with gr.Row():
            video_input = gr.Video(source='upload',include_audio=False)
            #video_input.style(witdh='50%',height='50%')
            video_output = gr.Video()
            #video_output.style(witdh='50%',height='50%')
        
        video_button = gr.Button("Analyze your Video")
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
            example_images = gr.Dataset(components=[video_input],
                                    samples=[[path.as_posix()]
                                             for path in paths if 'videos_side_by_side' not in str(path)])

    video_button.click(analyze_video_parallel, inputs=video_input, outputs=video_output)

    example_images.click(fn=set_example_image,
                         inputs=example_images,
                         outputs=video_input)

demo.queue()
#if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))