Spaces:
Runtime error
Runtime error
File size: 9,891 Bytes
588ce8d 3e8b98f 588ce8d 3e8b98f 588ce8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import numpy as np
import matplotlib.pyplot as plt
def get_top_predictions(prediction = None, threshold = 0.7):
if prediction is None:
return None, None
else:
sorted_scores_ids = prediction.pred_instances.scores.argsort()[::-1]
sorted_scores = prediction.pred_instances.scores[sorted_scores_ids]
sorted_predictions = prediction.pred_instances.labels[sorted_scores_ids]
return {'pred_above_thresh': sorted_predictions[sorted_scores > threshold],
'pred_above_thresh_id': sorted_scores_ids[sorted_scores > threshold],
'pred_above_thresh_scores': sorted_scores[sorted_scores > threshold],
'pred_above_thresh_bboxes': prediction.pred_instances['bboxes'][sorted_scores_ids][sorted_scores > threshold]}
def add_class_labels(top_pred = {}, class_labels = None):
if class_labels == None:
print('No class labels provided, returning original dictionary')
return top_pred
else:
top_pred['pred_above_thresh_labels'] = [class_labels[x].lower() for x in top_pred['pred_above_thresh']]
top_pred['any_detection'] = len(top_pred['pred_above_thresh_labels']) > 0
if top_pred['any_detection']:
# Get shark / human / unknown vectors
top_pred['is_shark'] = np.array([1 if 'shark' in x else 0 for x in top_pred['pred_above_thresh_labels']])
top_pred['is_human'] = np.array([1 if 'person' in x else 1 if 'surfer' in x else 0 for x in top_pred['pred_above_thresh_labels']])
top_pred['is_unknown'] = np.array([1 if 'unidentifiable' in x else 0 for x in top_pred['pred_above_thresh_labels']])
# Get shark / human / unknown numbers of detections
top_pred['shark_n'] = np.sum(top_pred['is_shark'])
top_pred['human_n'] = np.sum(top_pred['is_human'])
top_pred['unknown_n'] = np.sum(top_pred['is_unknown'])
else:
# Get shark / human / unknown vectors
top_pred['is_shark'] = None
top_pred['is_human'] = None
top_pred['is_unknown'] = None
# Get shark / human / unknown numbers of detections
top_pred['shark_n'] = 0
top_pred['human_n'] = 0
top_pred['unknown_n'] = 0
return top_pred
def add_class_sizes(top_pred = {}, class_sizes = None):
size_list = []
shark_size_list = []
if top_pred['any_detection']:
for tmp_pred in top_pred['pred_above_thresh_labels']:
tmp_class_sizes = class_sizes[tmp_pred.lower()]
if tmp_class_sizes == None:
size_list.append(None)
continue
else:
size_list.append(tmp_class_sizes['feet'])
if 'shark' in tmp_pred.lower():
shark_size_list.append(np.mean(tmp_class_sizes['feet']))
top_pred['pred_above_thresh_sizes'] = size_list
if top_pred['shark_n'] > 0:
top_pred['biggest_shark_size'] = np.max(shark_size_list)
else:
top_pred['biggest_shark_size'] = None
else:
top_pred['pred_above_thresh_sizes'] = None
top_pred['biggest_shark_size'] = None
return top_pred
def add_class_weights(top_pred = {}, class_weights = None):
weight_list = []
shark_weight_list = []
if top_pred['any_detection']:
for tmp_pred in top_pred['pred_above_thresh_labels']:
tmp_class_weights = class_weights[tmp_pred.lower()]
if tmp_class_weights == None:
weight_list.append(None)
continue
else:
weight_list.append(tmp_class_weights['pounds'])
if 'shark' in tmp_pred.lower():
shark_weight_list.append(np.mean(tmp_class_weights['pounds']))
top_pred['pred_above_thresh_weights'] = weight_list
if top_pred['shark_n'] > 0:
top_pred['biggest_shark_weight'] = np.max(shark_weight_list)
else:
top_pred['biggest_shark_weight'] = None
else:
top_pred['pred_above_thresh_weights'] = None
top_pred['biggest_shark_weight'] = None
return top_pred
# Sizes
def get_min_distance_shark_person(top_pred, class_sizes = None, dangerous_distance = 100):
min_dist = 99999
dist_calculated = False
# Calculate distance for every pairing of human and shark
# and accumulate the min distance
for i, tmp_shark in enumerate(top_pred['is_shark']):
for j, tmp_person in enumerate(top_pred['is_human']):
if tmp_shark == 1 and tmp_person == 1:
dist_calculated = True
#print(top_pred['pred_above_thresh_bboxes'][i])
#print(top_pred['pred_above_thresh_bboxes'][j])
tmp_dist_feed = _calculate_dist_estimate(top_pred['pred_above_thresh_bboxes'][i],
top_pred['pred_above_thresh_bboxes'][j],
[top_pred['pred_above_thresh_labels'][i], top_pred['pred_above_thresh_labels'][j]],
class_sizes,
measurement = 'feet')
#print(tmp_dist_feed)
min_dist = min(min_dist, tmp_dist_feed)
else:
pass
return {'min_dist': str(round(min_dist,1)) + ' feet' if dist_calculated else '',
'any_dist_calculated': dist_calculated,
'dangerous_dist': min_dist < dangerous_distance}
def _calculate_dist_estimate(bbox1, bbox2, labels, class_sizes = None, measurement = 'feet'):
class_feet_size_mean = np.array([class_sizes[labels[0]][measurement][0],
class_sizes[labels[1]][measurement][0]]).mean()
box_pixel_size_mean = np.array([np.linalg.norm(bbox1[[0, 1]] - bbox1[[2, 3]]),
np.linalg.norm(bbox2[[0, 1]] - bbox2[[2, 3]])]).mean()
# Calculate the max size of the two boxes
box_center_1 = np.array([(bbox1[2] - bbox1[0])/2 + bbox1[0],
(bbox1[3] - bbox1[1])/2 + bbox1[1]])
box_center_2 = np.array([(bbox2[2] - bbox2[0])/2 + bbox2[0],
(bbox2[3] - bbox2[1])/2 + bbox2[1]])
# Return ratio distance
return np.linalg.norm(box_center_1 - box_center_2) / box_pixel_size_mean * class_feet_size_mean
# bboxes info!
# 1 x1 (left, lower pixel number)
# 2 y1 (top , lower pixel number)
# 3 x2 (right, higher pixel number)
# 4 y2 (bottom, higher pixel number)
def process_results_for_plot(predictions = None, threshold = 0.5, classes = None,
class_sizes = None, dangerous_distance = 100):
top_pred = get_top_predictions(predictions, threshold = threshold)
top_pred = add_class_labels(top_pred, class_labels = classes)
top_pred = add_class_sizes(top_pred, class_sizes = class_sizes)
top_pred = add_class_weights(top_pred, class_weights = class_sizes)
if len(top_pred['pred_above_thresh']) > 0:
min_dist = get_min_distance_shark_person(top_pred, class_sizes = class_sizes)
else:
min_dist = {'any_dist_calculated': False,
'min_dist': '',
'dangerous_dist': False}
return {'min_dist_str': min_dist['min_dist'],
'shark_sighted': top_pred['shark_n'] > 0,
'human_sighted': top_pred['human_n'] > 0,
'shark_n': top_pred['shark_n'],
'human_n': top_pred['human_n'],
'human_and_shark': (top_pred['shark_n'] > 0) and (top_pred['human_n'] > 0),
'dangerous_dist': min_dist['dangerous_dist'],
'dist_calculated': min_dist['any_dist_calculated'],
'biggest_shark_size': '' if top_pred['biggest_shark_size'] == None else str(round(top_pred['biggest_shark_size'],1)) + ' feet',
'biggest_shark_weight': '' if top_pred['biggest_shark_weight'] == None else str(round(top_pred['biggest_shark_weight'],1)) + ' pounds',
}
def prediction_dashboard(top_pred = None):
# Bullet points:
shark_sighted = 'Shark Detected: ' + str(top_pred['shark_sighted'])
human_sighted = 'Number of Humans: ' + str(top_pred['human_n'])
shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])
danger_level = 'Danger Level: '
danger_level += 'High' if top_pred['dangerous_dist'] else 'Low'
danger_color = 'orangered' if top_pred['dangerous_dist'] else 'yellowgreen'
# Create a list of strings to plot
strings = [shark_sighted, human_sighted, shark_size_estimate, shark_weight_estimate, danger_level]
# Create a figure and axis
fig, ax = plt.subplots()
fig.set_facecolor((35/255,40/255,54/255))
# Hide axes
ax.axis('off')
# Position for starting to place text, starting from top
y_pos = 0.7
# Iterate through list and place each item as text on the plot
for s in strings:
if 'danger' in s.lower():
ax.text(0.05, y_pos, s, transform=ax.transAxes, fontsize=16, color=danger_color)
else:
ax.text(0.05, y_pos, s, transform=ax.transAxes, fontsize=16, color=(0, 204/255, 153/255))
y_pos -= 0.1 # move down for next item
# plt.tight_layout()
# If we haven't already shown or saved the plot, then we need to
# draw the figure first...
fig.canvas.draw();
# Now we can save it to a numpy array.
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
#plt.savefig('tmp.png', format='png')
return data #plt.show() |