Spaces:
Runtime error
Runtime error
File size: 7,199 Bytes
cd0d6f2 6454b14 eddda5a 7576d10 b73d81d cd0d6f2 5bbee66 6e8c2ef 4d701c0 eddda5a e213266 7576d10 6454b14 8353801 cd0d6f2 8353801 02cdb95 021ea63 5636b5c 588ce8d 8353801 cd0d6f2 5636b5c f3a075d 02cdb95 b3cb6e3 021ea63 588ce8d b3cb6e3 3e8b98f b3cb6e3 3e8b98f 6454b14 021ea63 6454b14 5636b5c 6454b14 5636b5c 6454b14 5636b5c 6454b14 5636b5c 6454b14 3e8b98f 588ce8d 037f9a9 588ce8d b3cb6e3 3e8b98f b3cb6e3 3e8b98f 169c8af 588ce8d 3e8b98f 6454b14 5636b5c 6454b14 588ce8d 5636b5c 588ce8d 169c8af 6454b14 50ba4a7 3e8b98f 588ce8d b3cb6e3 3e8b98f 169c8af b3cb6e3 6454b14 780307f 588ce8d 7576d10 4809f98 3e8b98f 4809f98 3e8b98f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import subprocess
import os
if os.getenv('SYSTEM') == 'spaces':
subprocess.call('pip install -U openmim'.split())
subprocess.call('pip install python-dotenv'.split())
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
subprocess.call('mim install mmcv>=2.0.0'.split())
subprocess.call('mim install mmengine'.split())
subprocess.call('mim install mmdet'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
import gradio as gr
from huggingface_hub import snapshot_download
import cv2
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame,inference_frame_serial
from inference import inference_frame_par_ready
from inference import process_frame
from inference import classes
from inference import class_sizes_lower
from metrics import process_results_for_plot
from metrics import prediction_dashboard
import os
import pathlib
import multiprocessing as mp
from time import time
if not os.path.exists('videos_example'):
REPO_ID='SharkSpace/videos_examples'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')
theme = gr.themes.Soft(
primary_hue="sky",
neutral_hue="slate",
)
def add_border(frame, color = (255, 0, 0), thickness = 2):
# Add a red border to the image
relative = max(frame.shape[0],frame.shape[1])
top = int(relative*0.025)
bottom = int(relative*0.025)
left = int(relative*0.025)
right = int(relative*0.025)
# Add the border to the image
bordered_image = cv2.copyMakeBorder(frame, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
return bordered_image
def overlay_text_on_image(image, text_list, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=0.5, font_thickness=1, margin=10, color=(255, 255, 255)):
relative = min(image.shape[0],image.shape[1])
y0, dy = margin, int(relative*0.1) # start y position and line gap
for i, line in enumerate(text_list):
y = y0 + i * dy
text_width, _ = cv2.getTextSize(line, font, font_size, font_thickness)[0]
cv2.putText(image, line, (image.shape[1] - text_width - margin, y), font, font_size, color, font_thickness, lineType=cv2.LINE_AA)
return image
def draw_cockpit(frame, top_pred,cnt):
# Bullet points:
high_danger_color = (255,0,0)
low_danger_color = yellowgreen = (154,205,50)
shark_sighted = 'Shark Detected: ' + str(top_pred['shark_sighted'])
human_sighted = 'Number of Humans: ' + str(top_pred['human_n'])
shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])
danger_level = 'Danger Level: '
danger_level += 'High' if top_pred['dangerous_dist'] else 'Low'
danger_color = 'orangered' if top_pred['dangerous_dist'] else 'yellowgreen'
# Create a list of strings to plot
strings = [shark_sighted, human_sighted, shark_size_estimate, shark_weight_estimate, danger_level]
relative = max(frame.shape[0],frame.shape[1])
if top_pred['shark_sighted'] and top_pred['dangerous_dist'] and cnt%2 == 0:
relative = max(frame.shape[0],frame.shape[1])
frame = add_border(frame, color=high_danger_color, thickness=int(relative*0.025))
elif top_pred['shark_sighted'] and not top_pred['dangerous_dist'] and cnt%2 == 0:
relative = max(frame.shape[0],frame.shape[1])
frame = add_border(frame, color=low_danger_color, thickness=int(relative*0.025))
overlay_text_on_image(frame, strings, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=relative*0.0007, font_thickness=1, margin=int(relative*0.05), color=(255, 255, 255))
return frame
def process_video(input_video, out_fps = 'auto', skip_frames = 7):
cap = cv2.VideoCapture(input_video)
output_path = "output.mp4"
if out_fps != 'auto' and type(out_fps) == int:
fps = int(out_fps)
else:
fps = int(cap.get(cv2.CAP_PROP_FPS))
if out_fps == 'auto':
fps = int(fps / skip_frames)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
iterating, frame = cap.read()
cnt = 0
while iterating:
if (cnt % skip_frames) == 0:
print('starting Frame: ', cnt)
# flip frame vertically
display_frame, result = inference_frame_serial(frame)
#print(result)
top_pred = process_results_for_plot(predictions = result.numpy(),
classes = classes,
class_sizes = class_sizes_lower)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
prediction_frame = cv2.cvtColor(display_frame, cv2.COLOR_BGR2RGB)
#frame = cv2.resize(frame, (int(width), int(height)))
if cnt*skip_frames %2==0 and top_pred['shark_sighted']:
#prediction_frame = cv2.resize(prediction_frame, (int(width), int(height)))
frame =prediction_frame
if top_pred['shark_sighted']:
frame = draw_cockpit(frame, top_pred,cnt*skip_frames)
video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
pred_dashbord = prediction_dashboard(top_pred = top_pred)
#print('sending frame')
print('finalizing frame:',cnt)
print(pred_dashbord.shape)
print(frame.shape)
print(prediction_frame.shape)
yield prediction_frame,frame , None, pred_dashbord
print('overall count ', cnt)
cnt += 1
iterating, frame = cap.read()
video.release()
yield None, None, output_path, None
with gr.Blocks(theme=theme) as demo:
with gr.Row().style(equal_height=True,height='25%'):
input_video = gr.Video(label="Input")
processed_frames = gr.Image(label="Shark Engine")
output_video = gr.Video(label="Output Video")
dashboard = gr.Image(label="Dashboard")
with gr.Row():
original_frames = gr.Image(label="Original Frame").style( height=650)
with gr.Row():
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
samples=[[path.as_posix()] for path in paths if 'raw_videos' in str(path)]
examples = gr.Examples(samples, inputs=input_video)
process_video_btn = gr.Button("Process Video")
process_video_btn.click(process_video, input_video, [processed_frames, original_frames, output_video, dashboard])
demo.queue()
if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
else:
demo.launch()
|