File size: 9,586 Bytes
bc2c9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import torch
from torch_utils import training_stats
from torch_utils import misc
from torch_utils.ops import conv2d_gradfix

#----------------------------------------------------------------------------

class Loss:
    def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain, lambda_sparse): # to be overridden by subclass
        raise NotImplementedError()

#----------------------------------------------------------------------------

class StyleGAN2Loss(Loss):
    def __init__(self, device, G_mapping, G_synthesis, D, M, augment_pipe=None, style_mixing_prob=0.9, r1_gamma=10, pl_batch_shrink=2, pl_decay=0.01, pl_weight=2):
        super().__init__()

        self.device = device
        self.G_mapping = G_mapping
        self.G_synthesis = G_synthesis
        self.D = D
        self.M = M
        self.augment_pipe = augment_pipe
        self.style_mixing_prob = style_mixing_prob
        self.r1_gamma = r1_gamma
        self.pl_batch_shrink = pl_batch_shrink
        self.pl_decay = pl_decay
        self.pl_weight = pl_weight
        self.pl_mean = torch.zeros([], device=device)
        self.K = 4

    def run_G(self, z, c, sync, mask_mode, sparse_loss=False, entropy_thr=0.5, temperature=1.0):
        with misc.ddp_sync(self.G_mapping, sync):
            mask = self.M(c)
            if sparse_loss:
                ws, loss_dict = self.G_mapping(z, mask, mask_mode=mask_mode, sparse_loss=True, entropy_thr=entropy_thr, temperature=temperature)
            else:
                ws = self.G_mapping(z, mask, mask_mode=mask_mode,entropy_thr=entropy_thr, temperature=temperature)
            if self.style_mixing_prob > 0:
                with torch.autograd.profiler.record_function('style_mixing'):
                    cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
                    cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
                    ws[:, cutoff:] = self.G_mapping(torch.randn_like(z), mask, mask_mode=mask_mode, skip_w_avg_update=True, sparse_loss=True, temperature=temperature,
                                                    entropy_thr=entropy_thr
                                                    )[0][:, cutoff:]
        with misc.ddp_sync(self.G_synthesis, sync):
            img = self.G_synthesis(ws)
        if sparse_loss:
            return img, ws, loss_dict
        else:
            return img, ws

    def run_D(self, img, c, sync):
        if self.augment_pipe is not None:
            img = self.augment_pipe(img)
        with misc.ddp_sync(self.D, sync):
            logits = self.D(img, c)
        return logits

    def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain, lambda_sparse, lambda_entropy, lambda_ortho, lambda_path, lambda_epsilon,
                             lambda_colvar, lambda_rowvar, lambda_equal, temperature, entropy_thr):
        assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth']
        do_Gmain = (phase in ['Gmain', 'Gboth'])
        do_Dmain = (phase in ['Dmain', 'Dboth'])
        do_Gpl   = (phase in ['Greg', 'Gboth']) and (self.pl_weight != 0)
        do_Dr1   = (phase in ['Dreg', 'Dboth']) and (self.r1_gamma != 0)
        loss_dict = {}
        self.mask_mode = 'gumbel_hard'
        # Gmain: Maximize logits for generated images.
        if do_Gmain:
            with torch.autograd.profiler.record_function('Gmain_forward'):
                gen_img, all_gen_ws, loss_dict = self.run_G(gen_z, gen_c, mask_mode=self.mask_mode,sync=(sync and not do_Gpl), sparse_loss=True, temperature=temperature,
                                                         entropy_thr=entropy_thr) # May get synced by Gpl.
                gen_logits = self.run_D(gen_img, gen_c, sync=False)

                training_stats.report('Loss/scores/fake', gen_logits)
                training_stats.report('Loss/signs/fake', gen_logits.sign())
                loss_Gmain = torch.nn.functional.softplus(-gen_logits) # -log(sigmoid(gen_logits))
                training_stats.report('Loss/G/sparse', loss_dict['loss_sparse'])

                loss_Gmain = loss_Gmain + lambda_sparse * loss_dict['loss_sparse']
                loss_Gmain = loss_Gmain + lambda_entropy * loss_dict['loss_entropy']
                loss_Gmain = loss_Gmain + lambda_ortho * loss_dict['loss_ortho']
                loss_Gmain = loss_Gmain + lambda_path * loss_dict['loss_path']
                loss_Gmain = loss_Gmain + lambda_epsilon * loss_dict['loss_epsilon']
                loss_Gmain = loss_Gmain + lambda_colvar * loss_dict['loss_colvar']
                loss_Gmain = loss_Gmain + lambda_rowvar * loss_dict['loss_rowvar']
                loss_Gmain = loss_Gmain + lambda_equal * loss_dict['loss_equal']
                training_stats.report('Loss/G/loss', loss_Gmain)
            with torch.autograd.profiler.record_function('Gmain_backward'):
                loss_Gmain.mean().mul(gain).backward()

        # Gpl: Apply path length regularization.
        if do_Gpl:
            with torch.autograd.profiler.record_function('Gpl_forward'):
                batch_size = gen_z.shape[0] // self.pl_batch_shrink
                gen_img, gen_ws, tq_loss_dict = self.run_G(gen_z[:batch_size], gen_c[:batch_size], mask_mode=self.mask_mode,sync=sync, sparse_loss=True,
                                                           temperature=temperature,
                                                )
                pl_noise = torch.randn_like(gen_img) / np.sqrt(gen_img.shape[2] * gen_img.shape[3])
                with torch.autograd.profiler.record_function('pl_grads'), conv2d_gradfix.no_weight_gradients():
                    pl_grads = torch.autograd.grad(outputs=[(gen_img * pl_noise).sum()], inputs=[gen_ws], create_graph=True, only_inputs=True)[0]
                pl_lengths = pl_grads.square().sum(2).mean(1).sqrt()
                pl_mean = self.pl_mean.lerp(pl_lengths.mean(), self.pl_decay)
                self.pl_mean.copy_(pl_mean.detach())
                pl_penalty = (pl_lengths - pl_mean).square()
                training_stats.report('Loss/pl_penalty', pl_penalty)
                loss_Gpl = pl_penalty * self.pl_weight
                training_stats.report('Loss/G/reg', loss_Gpl)
                loss_Gpl = loss_Gpl + 0 * tq_loss_dict['loss_equal']

            with torch.autograd.profiler.record_function('Gpl_backward'):
                (gen_img[:, 0, 0, 0] * 0 + loss_Gpl).mean().mul(gain).backward()

        # Dmain: Minimize logits for generated images.
        loss_Dgen = 0
        if do_Dmain:
            with torch.autograd.profiler.record_function('Dgen_forward'):
                gen_img, all_gen_ws, dmain_loss_dict = self.run_G(gen_z, gen_c, mask_mode=self.mask_mode, sync=False, sparse_loss=True, temperature=temperature)
                gen_logits = self.run_D(gen_img, gen_c, sync=False) # Gets synced by loss_Dreal.
                training_stats.report('Loss/scores/fake', gen_logits)
                training_stats.report('Loss/signs/fake', gen_logits.sign())
                loss_Dgen = torch.nn.functional.softplus(gen_logits) # -log(1 - sigmoid(gen_logits))
                loss_Dgen = loss_Dgen + 0 * dmain_loss_dict['loss_equal']
            with torch.autograd.profiler.record_function('Dgen_backward'):
                loss_Dgen.mean().mul(gain).backward()

        # Dmain: Maximize logits for real images.
        # Dr1: Apply R1 regularization.
        if do_Dmain or do_Dr1:
            name = 'Dreal_Dr1' if do_Dmain and do_Dr1 else 'Dreal' if do_Dmain else 'Dr1'
            with torch.autograd.profiler.record_function(name + '_forward'):
                real_img_tmp = real_img.detach().requires_grad_(do_Dr1)
                real_logits = self.run_D(real_img_tmp, real_c, sync=sync)
                training_stats.report('Loss/scores/real', real_logits)
                training_stats.report('Loss/signs/real', real_logits.sign())

                loss_Dreal = 0
                if do_Dmain:
                    loss_Dreal = torch.nn.functional.softplus(-real_logits) # -log(sigmoid(real_logits))
                    training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal)

                loss_Dr1 = 0
                if do_Dr1:
                    with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients():
                        r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp], create_graph=True, only_inputs=True)[0]
                    r1_penalty = r1_grads.square().sum([1,2,3])
                    loss_Dr1 = r1_penalty * (self.r1_gamma / 2)
                    training_stats.report('Loss/r1_penalty', r1_penalty)
                    training_stats.report('Loss/D/reg', loss_Dr1)

            with torch.autograd.profiler.record_function(name + '_backward'):
                (real_logits * 0 + loss_Dreal + loss_Dr1).mean().mul(gain).backward()
        return loss_dict
#----------------------------------------------------------------------------