File size: 154,276 Bytes
11b8e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
function_name,docstring,function_body,file_path
diffusion_from_config,,"def diffusion_from_config(config: Dict[str, Any]) ->GaussianDiffusion:
    schedule = config['schedule']
    steps = config['timesteps']
    respace = config.get('respacing', None)
    mean_type = config.get('mean_type', 'epsilon')
    betas = get_named_beta_schedule(schedule, steps)
    channel_scales = config.get('channel_scales', None)
    channel_biases = config.get('channel_biases', None)
    if channel_scales is not None:
        channel_scales = np.array(channel_scales)
    if channel_biases is not None:
        channel_biases = np.array(channel_biases)
    kwargs = dict(betas=betas, model_mean_type=mean_type, model_var_type=
        'learned_range', loss_type='mse', channel_scales=channel_scales,
        channel_biases=channel_biases)
    if respace is None:
        return GaussianDiffusion(**kwargs)
    else:
        return SpacedDiffusion(use_timesteps=space_timesteps(steps, respace
            ), **kwargs)
",point_e\diffusion\configs.py
get_beta_schedule,"This is the deprecated API for creating beta schedules.

See get_named_beta_schedule() for the new library of schedules.","def get_beta_schedule(beta_schedule, *, beta_start, beta_end,
    num_diffusion_timesteps):
    """"""""""""
    if beta_schedule == 'linear':
        betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps,
            dtype=np.float64)
    else:
        raise NotImplementedError(beta_schedule)
    assert betas.shape == (num_diffusion_timesteps,)
    return betas
",point_e\diffusion\gaussian_diffusion.py
get_named_beta_schedule,"Get a pre-defined beta schedule for the given name.

The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.","def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
    """"""""""""
    if schedule_name == 'linear':
        scale = 1000 / num_diffusion_timesteps
        return get_beta_schedule('linear', beta_start=scale * 0.0001,
            beta_end=scale * 0.02, num_diffusion_timesteps=
            num_diffusion_timesteps)
    elif schedule_name == 'cosine':
        return betas_for_alpha_bar(num_diffusion_timesteps, lambda t: math.
            cos((t + 0.008) / 1.008 * math.pi / 2) ** 2)
    else:
        raise NotImplementedError(f'unknown beta schedule: {schedule_name}')
",point_e\diffusion\gaussian_diffusion.py
betas_for_alpha_bar,"Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].

:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                  produces the cumulative product of (1-beta) up to that
                  part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
                 prevent singularities.","def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """"""""""""
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas)
",point_e\diffusion\gaussian_diffusion.py
space_timesteps,"Create a list of timesteps to use from an original diffusion process,
given the number of timesteps we want to take from equally-sized portions
of the original process.
For example, if there's 300 timesteps and the section counts are [10,15,20]
then the first 100 timesteps are strided to be 10 timesteps, the second 100
are strided to be 15 timesteps, and the final 100 are strided to be 20.
:param num_timesteps: the number of diffusion steps in the original
                      process to divide up.
:param section_counts: either a list of numbers, or a string containing
                       comma-separated numbers, indicating the step count
                       per section. As a special case, use ""ddimN"" where N
                       is a number of steps to use the striding from the
                       DDIM paper.
:return: a set of diffusion steps from the original process to use.","def space_timesteps(num_timesteps, section_counts):
    """"""""""""
    if isinstance(section_counts, str):
        if section_counts.startswith('ddim'):
            desired_count = int(section_counts[len('ddim'):])
            for i in range(1, num_timesteps):
                if len(range(0, num_timesteps, i)) == desired_count:
                    return set(range(0, num_timesteps, i))
            raise ValueError(
                f'cannot create exactly {num_timesteps} steps with an integer stride'
                )
        elif section_counts.startswith('exact'):
            res = set(int(x) for x in section_counts[len('exact'):].split(','))
            for x in res:
                if x < 0 or x >= num_timesteps:
                    raise ValueError(f'timestep out of bounds: {x}')
            return res
        section_counts = [int(x) for x in section_counts.split(',')]
    size_per = num_timesteps // len(section_counts)
    extra = num_timesteps % len(section_counts)
    start_idx = 0
    all_steps = []
    for i, section_count in enumerate(section_counts):
        size = size_per + (1 if i < extra else 0)
        if size < section_count:
            raise ValueError(
                f'cannot divide section of {size} steps into {section_count}')
        if section_count <= 1:
            frac_stride = 1
        else:
            frac_stride = (size - 1) / (section_count - 1)
        cur_idx = 0.0
        taken_steps = []
        for _ in range(section_count):
            taken_steps.append(start_idx + round(cur_idx))
            cur_idx += frac_stride
        all_steps += taken_steps
        start_idx += size
    return set(all_steps)
",point_e\diffusion\gaussian_diffusion.py
_extract_into_tensor,"Extract values from a 1-D numpy array for a batch of indices.

:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
                        dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.","def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """"""""""""
    res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res + th.zeros(broadcast_shape, device=timesteps.device)
",point_e\diffusion\gaussian_diffusion.py
normal_kl,"Compute the KL divergence between two gaussians.
Shapes are automatically broadcasted, so batches can be compared to
scalars, among other use cases.","def normal_kl(mean1, logvar1, mean2, logvar2):
    """"""""""""
    tensor = None
    for obj in (mean1, logvar1, mean2, logvar2):
        if isinstance(obj, th.Tensor):
            tensor = obj
            break
    assert tensor is not None, 'at least one argument must be a Tensor'
    logvar1, logvar2 = [(x if isinstance(x, th.Tensor) else th.tensor(x).to
        (tensor)) for x in (logvar1, logvar2)]
    return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + (
        mean1 - mean2) ** 2 * th.exp(-logvar2))
",point_e\diffusion\gaussian_diffusion.py
approx_standard_normal_cdf,"A fast approximation of the cumulative distribution function of the
standard normal.","def approx_standard_normal_cdf(x):
    """"""""""""
    return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.
        pow(x, 3))))
",point_e\diffusion\gaussian_diffusion.py
discretized_gaussian_log_likelihood,"Compute the log-likelihood of a Gaussian distribution discretizing to a
given image.
:param x: the target images. It is assumed that this was uint8 values,
          rescaled to the range [-1, 1].
:param means: the Gaussian mean Tensor.
:param log_scales: the Gaussian log stddev Tensor.
:return: a tensor like x of log probabilities (in nats).","def discretized_gaussian_log_likelihood(x, *, means, log_scales):
    """"""""""""
    assert x.shape == means.shape == log_scales.shape
    centered_x = x - means
    inv_stdv = th.exp(-log_scales)
    plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
    cdf_plus = approx_standard_normal_cdf(plus_in)
    min_in = inv_stdv * (centered_x - 1.0 / 255.0)
    cdf_min = approx_standard_normal_cdf(min_in)
    log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
    log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
    cdf_delta = cdf_plus - cdf_min
    log_probs = th.where(x < -0.999, log_cdf_plus, th.where(x > 0.999,
        log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))))
    assert log_probs.shape == x.shape
    return log_probs
",point_e\diffusion\gaussian_diffusion.py
mean_flat,Take the mean over all non-batch dimensions.,"def mean_flat(tensor):
    """"""""""""
    return tensor.flatten(1).mean(1)
",point_e\diffusion\gaussian_diffusion.py
__init__,,"def __init__(self, *, betas: Sequence[float], model_mean_type: str,
    model_var_type: str, loss_type: str, discretized_t0: bool=False,
    channel_scales: Optional[np.ndarray]=None, channel_biases: Optional[np.
    ndarray]=None):
    self.model_mean_type = model_mean_type
    self.model_var_type = model_var_type
    self.loss_type = loss_type
    self.discretized_t0 = discretized_t0
    self.channel_scales = channel_scales
    self.channel_biases = channel_biases
    betas = np.array(betas, dtype=np.float64)
    self.betas = betas
    assert len(betas.shape) == 1, 'betas must be 1-D'
    assert (betas > 0).all() and (betas <= 1).all()
    self.num_timesteps = int(betas.shape[0])
    alphas = 1.0 - betas
    self.alphas_cumprod = np.cumprod(alphas, axis=0)
    self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
    self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
    assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
    self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
    self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
    self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
    self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
    self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
    self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / (
        1.0 - self.alphas_cumprod)
    self.posterior_log_variance_clipped = np.log(np.append(self.
        posterior_variance[1], self.posterior_variance[1:]))
    self.posterior_mean_coef1 = betas * np.sqrt(self.alphas_cumprod_prev) / (
        1.0 - self.alphas_cumprod)
    self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * np.sqrt(
        alphas) / (1.0 - self.alphas_cumprod)
",point_e\diffusion\gaussian_diffusion.py
get_sigmas,,"def get_sigmas(self, t):
    return _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, t.shape)
",point_e\diffusion\gaussian_diffusion.py
q_mean_variance,"Get the distribution q(x_t | x_0).

:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.","def q_mean_variance(self, x_start, t):
    """"""""""""
    mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape
        ) * x_start
    variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape
        )
    log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod,
        t, x_start.shape)
    return mean, variance, log_variance
",point_e\diffusion\gaussian_diffusion.py
q_sample,"Diffuse the data for a given number of diffusion steps.

In other words, sample from q(x_t | x_0).

:param x_start: the initial data batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.","def q_sample(self, x_start, t, noise=None):
    """"""""""""
    if noise is None:
        noise = th.randn_like(x_start)
    assert noise.shape == x_start.shape
    return _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape
        ) * x_start + _extract_into_tensor(self.
        sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
",point_e\diffusion\gaussian_diffusion.py
q_posterior_mean_variance,"Compute the mean and variance of the diffusion posterior:

    q(x_{t-1} | x_t, x_0)","def q_posterior_mean_variance(self, x_start, x_t, t):
    """"""""""""
    assert x_start.shape == x_t.shape
    posterior_mean = _extract_into_tensor(self.posterior_mean_coef1, t, x_t
        .shape) * x_start + _extract_into_tensor(self.posterior_mean_coef2,
        t, x_t.shape) * x_t
    posterior_variance = _extract_into_tensor(self.posterior_variance, t,
        x_t.shape)
    posterior_log_variance_clipped = _extract_into_tensor(self.
        posterior_log_variance_clipped, t, x_t.shape)
    assert posterior_mean.shape[0] == posterior_variance.shape[0
        ] == posterior_log_variance_clipped.shape[0] == x_start.shape[0]
    return posterior_mean, posterior_variance, posterior_log_variance_clipped
",point_e\diffusion\gaussian_diffusion.py
p_mean_variance,"Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
the initial x, x_0.

:param model: the model, which takes a signal and a batch of timesteps
              as input.
:param x: the [N x C x ...] tensor at time t.
:param t: a 1-D Tensor of timesteps.
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
:param denoised_fn: if not None, a function which applies to the
    x_start prediction before it is used to sample. Applies before
    clip_denoised.
:param model_kwargs: if not None, a dict of extra keyword arguments to
    pass to the model. This can be used for conditioning.
:return: a dict with the following keys:
         - 'mean': the model mean output.
         - 'variance': the model variance output.
         - 'log_variance': the log of 'variance'.
         - 'pred_xstart': the prediction for x_0.","def p_mean_variance(self, model, x, t, clip_denoised=False, denoised_fn=
    None, model_kwargs=None):
    """"""""""""
    if model_kwargs is None:
        model_kwargs = {}
    B, C = x.shape[:2]
    assert t.shape == (B,)
    model_output = model(x, t, **model_kwargs)
    if isinstance(model_output, tuple):
        model_output, extra = model_output
    else:
        extra = None
    if self.model_var_type in ['learned', 'learned_range']:
        assert model_output.shape == (B, C * 2, *x.shape[2:])
        model_output, model_var_values = th.split(model_output, C, dim=1)
        if self.model_var_type == 'learned':
            model_log_variance = model_var_values
            model_variance = th.exp(model_log_variance)
        else:
            min_log = _extract_into_tensor(self.
                posterior_log_variance_clipped, t, x.shape)
            max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
            frac = (model_var_values + 1) / 2
            model_log_variance = frac * max_log + (1 - frac) * min_log
            model_variance = th.exp(model_log_variance)
    else:
        model_variance, model_log_variance = {'fixed_large': (np.append(
            self.posterior_variance[1], self.betas[1:]), np.log(np.append(
            self.posterior_variance[1], self.betas[1:]))), 'fixed_small': (
            self.posterior_variance, self.posterior_log_variance_clipped)}[self
            .model_var_type]
        model_variance = _extract_into_tensor(model_variance, t, x.shape)
        model_log_variance = _extract_into_tensor(model_log_variance, t, x.
            shape)

    def process_xstart(x):
        if denoised_fn is not None:
            x = denoised_fn(x)
        if clip_denoised:
            return x.clamp(-1, 1)
        return x
    if self.model_mean_type == 'x_prev':
        pred_xstart = process_xstart(self._predict_xstart_from_xprev(x_t=x,
            t=t, xprev=model_output))
        model_mean = model_output
    elif self.model_mean_type in ['x_start', 'epsilon']:
        if self.model_mean_type == 'x_start':
            pred_xstart = process_xstart(model_output)
        else:
            pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=
                x, t=t, eps=model_output))
        model_mean, _, _ = self.q_posterior_mean_variance(x_start=
            pred_xstart, x_t=x, t=t)
    else:
        raise NotImplementedError(self.model_mean_type)
    assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
    return {'mean': model_mean, 'variance': model_variance, 'log_variance':
        model_log_variance, 'pred_xstart': pred_xstart, 'extra': extra}
",point_e\diffusion\gaussian_diffusion.py
_predict_xstart_from_eps,,"def _predict_xstart_from_eps(self, x_t, t, eps):
    assert x_t.shape == eps.shape
    return _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape
        ) * x_t - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t,
        x_t.shape) * eps
",point_e\diffusion\gaussian_diffusion.py
_predict_xstart_from_xprev,,"def _predict_xstart_from_xprev(self, x_t, t, xprev):
    assert x_t.shape == xprev.shape
    return _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape
        ) * xprev - _extract_into_tensor(self.posterior_mean_coef2 / self.
        posterior_mean_coef1, t, x_t.shape) * x_t
",point_e\diffusion\gaussian_diffusion.py
_predict_eps_from_xstart,,"def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
    return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.
        shape) * x_t - pred_xstart) / _extract_into_tensor(self.
        sqrt_recipm1_alphas_cumprod, t, x_t.shape)
",point_e\diffusion\gaussian_diffusion.py
condition_mean,"Compute the mean for the previous step, given a function cond_fn that
computes the gradient of a conditional log probability with respect to
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
condition on y.

This uses the conditioning strategy from Sohl-Dickstein et al. (2015).","def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
    """"""""""""
    gradient = cond_fn(x, t, **model_kwargs)
    new_mean = p_mean_var['mean'].float() + p_mean_var['variance'
        ] * gradient.float()
    return new_mean
",point_e\diffusion\gaussian_diffusion.py
condition_score,"Compute what the p_mean_variance output would have been, should the
model's score function be conditioned by cond_fn.

See condition_mean() for details on cond_fn.

Unlike condition_mean(), this instead uses the conditioning strategy
from Song et al (2020).","def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
    """"""""""""
    alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
    eps = self._predict_eps_from_xstart(x, t, p_mean_var['pred_xstart'])
    eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs)
    out = p_mean_var.copy()
    out['pred_xstart'] = self._predict_xstart_from_eps(x, t, eps)
    out['mean'], _, _ = self.q_posterior_mean_variance(x_start=out[
        'pred_xstart'], x_t=x, t=t)
    return out
",point_e\diffusion\gaussian_diffusion.py
p_sample,"Sample x_{t-1} from the model at the given timestep.

:param model: the model to sample from.
:param x: the current tensor at x_{t-1}.
:param t: the value of t, starting at 0 for the first diffusion step.
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
    x_start prediction before it is used to sample.
:param cond_fn: if not None, this is a gradient function that acts
                similarly to the model.
:param model_kwargs: if not None, a dict of extra keyword arguments to
    pass to the model. This can be used for conditioning.
:return: a dict containing the following keys:
         - 'sample': a random sample from the model.
         - 'pred_xstart': a prediction of x_0.","def p_sample(self, model, x, t, clip_denoised=False, denoised_fn=None,
    cond_fn=None, model_kwargs=None):
    """"""""""""
    out = self.p_mean_variance(model, x, t, clip_denoised=clip_denoised,
        denoised_fn=denoised_fn, model_kwargs=model_kwargs)
    noise = th.randn_like(x)
    nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
    if cond_fn is not None:
        out['mean'] = self.condition_mean(cond_fn, out, x, t, model_kwargs=
            model_kwargs)
    sample = out['mean'] + nonzero_mask * th.exp(0.5 * out['log_variance']
        ) * noise
    return {'sample': sample, 'pred_xstart': out['pred_xstart']}
",point_e\diffusion\gaussian_diffusion.py
p_sample_loop,"Generate samples from the model.

:param model: the model module.
:param shape: the shape of the samples, (N, C, H, W).
:param noise: if specified, the noise from the encoder to sample.
              Should be of the same shape as `shape`.
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
    x_start prediction before it is used to sample.
:param cond_fn: if not None, this is a gradient function that acts
                similarly to the model.
:param model_kwargs: if not None, a dict of extra keyword arguments to
    pass to the model. This can be used for conditioning.
:param device: if specified, the device to create the samples on.
               If not specified, use a model parameter's device.
:param progress: if True, show a tqdm progress bar.
:return: a non-differentiable batch of samples.","def p_sample_loop(self, model, shape, noise=None, clip_denoised=False,
    denoised_fn=None, cond_fn=None, model_kwargs=None, device=None,
    progress=False, temp=1.0):
    """"""""""""
    final = None
    for sample in self.p_sample_loop_progressive(model, shape, noise=noise,
        clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=
        cond_fn, model_kwargs=model_kwargs, device=device, progress=
        progress, temp=temp):
        final = sample
    return final['sample']
",point_e\diffusion\gaussian_diffusion.py
p_sample_loop_progressive,"Generate samples from the model and yield intermediate samples from
each timestep of diffusion.

Arguments are the same as p_sample_loop().
Returns a generator over dicts, where each dict is the return value of
p_sample().","def p_sample_loop_progressive(self, model, shape, noise=None, clip_denoised
    =False, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None,
    progress=False, temp=1.0):
    """"""""""""
    if device is None:
        device = next(model.parameters()).device
    assert isinstance(shape, (tuple, list))
    if noise is not None:
        img = noise
    else:
        img = th.randn(*shape, device=device) * temp
    indices = list(range(self.num_timesteps))[::-1]
    if progress:
        from tqdm.auto import tqdm
        indices = tqdm(indices)
    for i in indices:
        t = th.tensor([i] * shape[0], device=device)
        with th.no_grad():
            out = self.p_sample(model, img, t, clip_denoised=clip_denoised,
                denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=
                model_kwargs)
            yield self.unscale_out_dict(out)
            img = out['sample']
",point_e\diffusion\gaussian_diffusion.py
ddim_sample,"Sample x_{t-1} from the model using DDIM.

Same usage as p_sample().","def ddim_sample(self, model, x, t, clip_denoised=False, denoised_fn=None,
    cond_fn=None, model_kwargs=None, eta=0.0):
    """"""""""""
    out = self.p_mean_variance(model, x, t, clip_denoised=clip_denoised,
        denoised_fn=denoised_fn, model_kwargs=model_kwargs)
    if cond_fn is not None:
        out = self.condition_score(cond_fn, out, x, t, model_kwargs=
            model_kwargs)
    eps = self._predict_eps_from_xstart(x, t, out['pred_xstart'])
    alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
    alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
    sigma = eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(
        1 - alpha_bar / alpha_bar_prev)
    noise = th.randn_like(x)
    mean_pred = out['pred_xstart'] * th.sqrt(alpha_bar_prev) + th.sqrt(1 -
        alpha_bar_prev - sigma ** 2) * eps
    nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
    sample = mean_pred + nonzero_mask * sigma * noise
    return {'sample': sample, 'pred_xstart': out['pred_xstart']}
",point_e\diffusion\gaussian_diffusion.py
ddim_reverse_sample,Sample x_{t+1} from the model using DDIM reverse ODE.,"def ddim_reverse_sample(self, model, x, t, clip_denoised=False, denoised_fn
    =None, cond_fn=None, model_kwargs=None, eta=0.0):
    """"""""""""
    assert eta == 0.0, 'Reverse ODE only for deterministic path'
    out = self.p_mean_variance(model, x, t, clip_denoised=clip_denoised,
        denoised_fn=denoised_fn, model_kwargs=model_kwargs)
    if cond_fn is not None:
        out = self.condition_score(cond_fn, out, x, t, model_kwargs=
            model_kwargs)
    eps = (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) *
        x - out['pred_xstart']) / _extract_into_tensor(self.
        sqrt_recipm1_alphas_cumprod, t, x.shape)
    alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
    mean_pred = out['pred_xstart'] * th.sqrt(alpha_bar_next) + th.sqrt(1 -
        alpha_bar_next) * eps
    return {'sample': mean_pred, 'pred_xstart': out['pred_xstart']}
",point_e\diffusion\gaussian_diffusion.py
ddim_sample_loop,"Generate samples from the model using DDIM.

Same usage as p_sample_loop().","def ddim_sample_loop(self, model, shape, noise=None, clip_denoised=False,
    denoised_fn=None, cond_fn=None, model_kwargs=None, device=None,
    progress=False, eta=0.0, temp=1.0):
    """"""""""""
    final = None
    for sample in self.ddim_sample_loop_progressive(model, shape, noise=
        noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn,
        cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress
        =progress, eta=eta, temp=temp):
        final = sample
    return final['sample']
",point_e\diffusion\gaussian_diffusion.py
ddim_sample_loop_progressive,"Use DDIM to sample from the model and yield intermediate samples from
each timestep of DDIM.

Same usage as p_sample_loop_progressive().","def ddim_sample_loop_progressive(self, model, shape, noise=None,
    clip_denoised=False, denoised_fn=None, cond_fn=None, model_kwargs=None,
    device=None, progress=False, eta=0.0, temp=1.0):
    """"""""""""
    if device is None:
        device = next(model.parameters()).device
    assert isinstance(shape, (tuple, list))
    if noise is not None:
        img = noise
    else:
        img = th.randn(*shape, device=device) * temp
    indices = list(range(self.num_timesteps))[::-1]
    if progress:
        from tqdm.auto import tqdm
        indices = tqdm(indices)
    for i in indices:
        t = th.tensor([i] * shape[0], device=device)
        with th.no_grad():
            out = self.ddim_sample(model, img, t, clip_denoised=
                clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn,
                model_kwargs=model_kwargs, eta=eta)
            yield self.unscale_out_dict(out)
            img = out['sample']
",point_e\diffusion\gaussian_diffusion.py
_vb_terms_bpd,"Get a term for the variational lower-bound.

The resulting units are bits (rather than nats, as one might expect).
This allows for comparison to other papers.

:return: a dict with the following keys:
         - 'output': a shape [N] tensor of NLLs or KLs.
         - 'pred_xstart': the x_0 predictions.","def _vb_terms_bpd(self, model, x_start, x_t, t, clip_denoised=False,
    model_kwargs=None):
    """"""""""""
    true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
        x_start=x_start, x_t=x_t, t=t)
    out = self.p_mean_variance(model, x_t, t, clip_denoised=clip_denoised,
        model_kwargs=model_kwargs)
    kl = normal_kl(true_mean, true_log_variance_clipped, out['mean'], out[
        'log_variance'])
    kl = mean_flat(kl) / np.log(2.0)
    decoder_nll = -discretized_gaussian_log_likelihood(x_start, means=out[
        'mean'], log_scales=0.5 * out['log_variance'])
    if not self.discretized_t0:
        decoder_nll = th.zeros_like(decoder_nll)
    assert decoder_nll.shape == x_start.shape
    decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
    output = th.where(t == 0, decoder_nll, kl)
    return {'output': output, 'pred_xstart': out['pred_xstart'], 'extra':
        out['extra']}
",point_e\diffusion\gaussian_diffusion.py
training_losses,"Compute training losses for a single timestep.

:param model: the model to evaluate loss on.
:param x_start: the [N x C x ...] tensor of inputs.
:param t: a batch of timestep indices.
:param model_kwargs: if not None, a dict of extra keyword arguments to
    pass to the model. This can be used for conditioning.
:param noise: if specified, the specific Gaussian noise to try to remove.
:return: a dict with the key ""loss"" containing a tensor of shape [N].
         Some mean or variance settings may also have other keys.","def training_losses(self, model, x_start, t, model_kwargs=None, noise=None
    ) ->Dict[str, th.Tensor]:
    """"""""""""
    x_start = self.scale_channels(x_start)
    if model_kwargs is None:
        model_kwargs = {}
    if noise is None:
        noise = th.randn_like(x_start)
    x_t = self.q_sample(x_start, t, noise=noise)
    terms = {}
    if self.loss_type == 'kl' or self.loss_type == 'rescaled_kl':
        vb_terms = self._vb_terms_bpd(model=model, x_start=x_start, x_t=x_t,
            t=t, clip_denoised=False, model_kwargs=model_kwargs)
        terms['loss'] = vb_terms['output']
        if self.loss_type == 'rescaled_kl':
            terms['loss'] *= self.num_timesteps
        extra = vb_terms['extra']
    elif self.loss_type == 'mse' or self.loss_type == 'rescaled_mse':
        model_output = model(x_t, t, **model_kwargs)
        if isinstance(model_output, tuple):
            model_output, extra = model_output
        else:
            extra = {}
        if self.model_var_type in ['learned', 'learned_range']:
            B, C = x_t.shape[:2]
            assert model_output.shape == (B, C * 2, *x_t.shape[2:])
            model_output, model_var_values = th.split(model_output, C, dim=1)
            frozen_out = th.cat([model_output.detach(), model_var_values],
                dim=1)
            terms['vb'] = self._vb_terms_bpd(model=lambda *args, r=
                frozen_out: r, x_start=x_start, x_t=x_t, t=t, clip_denoised
                =False)['output']
            if self.loss_type == 'rescaled_mse':
                terms['vb'] *= self.num_timesteps / 1000.0
        target = {'x_prev': self.q_posterior_mean_variance(x_start=x_start,
            x_t=x_t, t=t)[0], 'x_start': x_start, 'epsilon': noise}[self.
            model_mean_type]
        assert model_output.shape == target.shape == x_start.shape
        terms['mse'] = mean_flat((target - model_output) ** 2)
        if 'vb' in terms:
            terms['loss'] = terms['mse'] + terms['vb']
        else:
            terms['loss'] = terms['mse']
    else:
        raise NotImplementedError(self.loss_type)
    if 'losses' in extra:
        terms.update({k: loss for k, (loss, _scale) in extra['losses'].items()}
            )
        for loss, scale in extra['losses'].values():
            terms['loss'] = terms['loss'] + loss * scale
    return terms
",point_e\diffusion\gaussian_diffusion.py
_prior_bpd,"Get the prior KL term for the variational lower-bound, measured in
bits-per-dim.

This term can't be optimized, as it only depends on the encoder.

:param x_start: the [N x C x ...] tensor of inputs.
:return: a batch of [N] KL values (in bits), one per batch element.","def _prior_bpd(self, x_start):
    """"""""""""
    batch_size = x_start.shape[0]
    t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
    qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
    kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0,
        logvar2=0.0)
    return mean_flat(kl_prior) / np.log(2.0)
",point_e\diffusion\gaussian_diffusion.py
calc_bpd_loop,"Compute the entire variational lower-bound, measured in bits-per-dim,
as well as other related quantities.

:param model: the model to evaluate loss on.
:param x_start: the [N x C x ...] tensor of inputs.
:param clip_denoised: if True, clip denoised samples.
:param model_kwargs: if not None, a dict of extra keyword arguments to
    pass to the model. This can be used for conditioning.

:return: a dict containing the following keys:
         - total_bpd: the total variational lower-bound, per batch element.
         - prior_bpd: the prior term in the lower-bound.
         - vb: an [N x T] tensor of terms in the lower-bound.
         - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
         - mse: an [N x T] tensor of epsilon MSEs for each timestep.","def calc_bpd_loop(self, model, x_start, clip_denoised=False, model_kwargs=None
    ):
    """"""""""""
    device = x_start.device
    batch_size = x_start.shape[0]
    vb = []
    xstart_mse = []
    mse = []
    for t in list(range(self.num_timesteps))[::-1]:
        t_batch = th.tensor([t] * batch_size, device=device)
        noise = th.randn_like(x_start)
        x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
        with th.no_grad():
            out = self._vb_terms_bpd(model, x_start=x_start, x_t=x_t, t=
                t_batch, clip_denoised=clip_denoised, model_kwargs=model_kwargs
                )
        vb.append(out['output'])
        xstart_mse.append(mean_flat((out['pred_xstart'] - x_start) ** 2))
        eps = self._predict_eps_from_xstart(x_t, t_batch, out['pred_xstart'])
        mse.append(mean_flat((eps - noise) ** 2))
    vb = th.stack(vb, dim=1)
    xstart_mse = th.stack(xstart_mse, dim=1)
    mse = th.stack(mse, dim=1)
    prior_bpd = self._prior_bpd(x_start)
    total_bpd = vb.sum(dim=1) + prior_bpd
    return {'total_bpd': total_bpd, 'prior_bpd': prior_bpd, 'vb': vb,
        'xstart_mse': xstart_mse, 'mse': mse}
",point_e\diffusion\gaussian_diffusion.py
scale_channels,,"def scale_channels(self, x: th.Tensor) ->th.Tensor:
    if self.channel_scales is not None:
        x = x * th.from_numpy(self.channel_scales).to(x).reshape([1, -1, *(
            [1] * (len(x.shape) - 2))])
    if self.channel_biases is not None:
        x = x + th.from_numpy(self.channel_biases).to(x).reshape([1, -1, *(
            [1] * (len(x.shape) - 2))])
    return x
",point_e\diffusion\gaussian_diffusion.py
unscale_channels,,"def unscale_channels(self, x: th.Tensor) ->th.Tensor:
    if self.channel_biases is not None:
        x = x - th.from_numpy(self.channel_biases).to(x).reshape([1, -1, *(
            [1] * (len(x.shape) - 2))])
    if self.channel_scales is not None:
        x = x / th.from_numpy(self.channel_scales).to(x).reshape([1, -1, *(
            [1] * (len(x.shape) - 2))])
    return x
",point_e\diffusion\gaussian_diffusion.py
unscale_out_dict,,"def unscale_out_dict(self, out: Dict[str, Union[th.Tensor, Any]]) ->Dict[
    str, Union[th.Tensor, Any]]:
    return {k: (self.unscale_channels(v) if isinstance(v, th.Tensor) else v
        ) for k, v in out.items()}
",point_e\diffusion\gaussian_diffusion.py
__init__,,"def __init__(self, use_timesteps: Iterable[int], **kwargs):
    self.use_timesteps = set(use_timesteps)
    self.timestep_map = []
    self.original_num_steps = len(kwargs['betas'])
    base_diffusion = GaussianDiffusion(**kwargs)
    last_alpha_cumprod = 1.0
    new_betas = []
    for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
        if i in self.use_timesteps:
            new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
            last_alpha_cumprod = alpha_cumprod
            self.timestep_map.append(i)
    kwargs['betas'] = np.array(new_betas)
    super().__init__(**kwargs)
",point_e\diffusion\gaussian_diffusion.py
p_mean_variance,,"def p_mean_variance(self, model, *args, **kwargs):
    return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
",point_e\diffusion\gaussian_diffusion.py
training_losses,,"def training_losses(self, model, *args, **kwargs):
    return super().training_losses(self._wrap_model(model), *args, **kwargs)
",point_e\diffusion\gaussian_diffusion.py
condition_mean,,"def condition_mean(self, cond_fn, *args, **kwargs):
    return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
",point_e\diffusion\gaussian_diffusion.py
condition_score,,"def condition_score(self, cond_fn, *args, **kwargs):
    return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
",point_e\diffusion\gaussian_diffusion.py
_wrap_model,,"def _wrap_model(self, model):
    if isinstance(model, _WrappedModel):
        return model
    return _WrappedModel(model, self.timestep_map, self.original_num_steps)
",point_e\diffusion\gaussian_diffusion.py
__init__,,"def __init__(self, model, timestep_map, original_num_steps):
    self.model = model
    self.timestep_map = timestep_map
    self.original_num_steps = original_num_steps
",point_e\diffusion\gaussian_diffusion.py
__call__,,"def __call__(self, x, ts, **kwargs):
    map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
    new_ts = map_tensor[ts]
    return self.model(x, new_ts, **kwargs)
",point_e\diffusion\gaussian_diffusion.py
karras_sample,,"def karras_sample(*args, **kwargs):
    last = None
    for x in karras_sample_progressive(*args, **kwargs):
        last = x['x']
    return last
",point_e\diffusion\k_diffusion.py
karras_sample_progressive,,"def karras_sample_progressive(diffusion, model, shape, steps, clip_denoised
    =True, progress=False, model_kwargs=None, device=None, sigma_min=0.002,
    sigma_max=80, rho=7.0, sampler='heun', s_churn=0.0, s_tmin=0.0, s_tmax=
    float('inf'), s_noise=1.0, guidance_scale=0.0):
    sigmas = get_sigmas_karras(steps, sigma_min, sigma_max, rho, device=device)
    x_T = th.randn(*shape, device=device) * sigma_max
    sample_fn = {'heun': sample_heun, 'dpm': sample_dpm, 'ancestral':
        sample_euler_ancestral}[sampler]
    if sampler != 'ancestral':
        sampler_args = dict(s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax,
            s_noise=s_noise)
    else:
        sampler_args = {}
    if isinstance(diffusion, KarrasDenoiser):

        def denoiser(x_t, sigma):
            _, denoised = diffusion.denoise(model, x_t, sigma, **model_kwargs)
            if clip_denoised:
                denoised = denoised.clamp(-1, 1)
            return denoised
    elif isinstance(diffusion, GaussianDiffusion):
        model = GaussianToKarrasDenoiser(model, diffusion)

        def denoiser(x_t, sigma):
            _, denoised = model.denoise(x_t, sigma, clip_denoised=
                clip_denoised, model_kwargs=model_kwargs)
            return denoised
    else:
        raise NotImplementedError
    if guidance_scale != 0 and guidance_scale != 1:

        def guided_denoiser(x_t, sigma):
            x_t = th.cat([x_t, x_t], dim=0)
            sigma = th.cat([sigma, sigma], dim=0)
            x_0 = denoiser(x_t, sigma)
            cond_x_0, uncond_x_0 = th.split(x_0, len(x_0) // 2, dim=0)
            x_0 = uncond_x_0 + guidance_scale * (cond_x_0 - uncond_x_0)
            return x_0
    else:
        guided_denoiser = denoiser
    for obj in sample_fn(guided_denoiser, x_T, sigmas, progress=progress,
        **sampler_args):
        if isinstance(diffusion, GaussianDiffusion):
            yield diffusion.unscale_out_dict(obj)
        else:
            yield obj
",point_e\diffusion\k_diffusion.py
get_sigmas_karras,Constructs the noise schedule of Karras et al. (2022).,"def get_sigmas_karras(n, sigma_min, sigma_max, rho=7.0, device='cpu'):
    """"""""""""
    ramp = th.linspace(0, 1, n)
    min_inv_rho = sigma_min ** (1 / rho)
    max_inv_rho = sigma_max ** (1 / rho)
    sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
    return append_zero(sigmas).to(device)
",point_e\diffusion\k_diffusion.py
to_d,Converts a denoiser output to a Karras ODE derivative.,"def to_d(x, sigma, denoised):
    """"""""""""
    return (x - denoised) / append_dims(sigma, x.ndim)
",point_e\diffusion\k_diffusion.py
get_ancestral_step,"Calculates the noise level (sigma_down) to step down to and the amount
of noise to add (sigma_up) when doing an ancestral sampling step.","def get_ancestral_step(sigma_from, sigma_to):
    """"""""""""
    sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / 
        sigma_from ** 2) ** 0.5
    sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
    return sigma_down, sigma_up
",point_e\diffusion\k_diffusion.py
sample_euler_ancestral,Ancestral sampling with Euler method steps.,"@th.no_grad()
def sample_euler_ancestral(model, x, sigmas, progress=False):
    """"""""""""
    s_in = x.new_ones([x.shape[0]])
    indices = range(len(sigmas) - 1)
    if progress:
        from tqdm.auto import tqdm
        indices = tqdm(indices)
    for i in indices:
        denoised = model(x, sigmas[i] * s_in)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
        yield {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i],
            'pred_xstart': denoised}
        d = to_d(x, sigmas[i], denoised)
        dt = sigma_down - sigmas[i]
        x = x + d * dt
        x = x + th.randn_like(x) * sigma_up
    yield {'x': x, 'pred_xstart': x}
",point_e\diffusion\k_diffusion.py
sample_heun,Implements Algorithm 2 (Heun steps) from Karras et al. (2022).,"@th.no_grad()
def sample_heun(denoiser, x, sigmas, progress=False, s_churn=0.0, s_tmin=
    0.0, s_tmax=float('inf'), s_noise=1.0):
    """"""""""""
    s_in = x.new_ones([x.shape[0]])
    indices = range(len(sigmas) - 1)
    if progress:
        from tqdm.auto import tqdm
        indices = tqdm(indices)
    for i in indices:
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1
            ) if s_tmin <= sigmas[i] <= s_tmax else 0.0
        eps = th.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = denoiser(x, sigma_hat * s_in)
        d = to_d(x, sigma_hat, denoised)
        yield {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat,
            'pred_xstart': denoised}
        dt = sigmas[i + 1] - sigma_hat
        if sigmas[i + 1] == 0:
            x = x + d * dt
        else:
            x_2 = x + d * dt
            denoised_2 = denoiser(x_2, sigmas[i + 1] * s_in)
            d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
            d_prime = (d + d_2) / 2
            x = x + d_prime * dt
    yield {'x': x, 'pred_xstart': denoised}
",point_e\diffusion\k_diffusion.py
sample_dpm,A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022).,"@th.no_grad()
def sample_dpm(denoiser, x, sigmas, progress=False, s_churn=0.0, s_tmin=0.0,
    s_tmax=float('inf'), s_noise=1.0):
    """"""""""""
    s_in = x.new_ones([x.shape[0]])
    indices = range(len(sigmas) - 1)
    if progress:
        from tqdm.auto import tqdm
        indices = tqdm(indices)
    for i in indices:
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1
            ) if s_tmin <= sigmas[i] <= s_tmax else 0.0
        eps = th.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = denoiser(x, sigma_hat * s_in)
        d = to_d(x, sigma_hat, denoised)
        yield {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat,
            'denoised': denoised}
        sigma_mid = ((sigma_hat ** (1 / 3) + sigmas[i + 1] ** (1 / 3)) / 2
            ) ** 3
        dt_1 = sigma_mid - sigma_hat
        dt_2 = sigmas[i + 1] - sigma_hat
        x_2 = x + d * dt_1
        denoised_2 = denoiser(x_2, sigma_mid * s_in)
        d_2 = to_d(x_2, sigma_mid, denoised_2)
        x = x + d_2 * dt_2
    yield {'x': x, 'pred_xstart': denoised}
",point_e\diffusion\k_diffusion.py
append_dims,Appends dimensions to the end of a tensor until it has target_dims dimensions.,"def append_dims(x, target_dims):
    """"""""""""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(
            f'input has {x.ndim} dims but target_dims is {target_dims}, which is less'
            )
    return x[(...,) + (None,) * dims_to_append]
",point_e\diffusion\k_diffusion.py
append_zero,,"def append_zero(x):
    return th.cat([x, x.new_zeros([1])])
",point_e\diffusion\k_diffusion.py
__init__,,"def __init__(self, sigma_data: float=0.5):
    self.sigma_data = sigma_data
",point_e\diffusion\k_diffusion.py
get_snr,,"def get_snr(self, sigmas):
    return sigmas ** -2
",point_e\diffusion\k_diffusion.py
get_sigmas,,"def get_sigmas(self, sigmas):
    return sigmas
",point_e\diffusion\k_diffusion.py
get_scalings,,"def get_scalings(self, sigma):
    c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
    c_out = sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2
        ) ** 0.5
    c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
    return c_skip, c_out, c_in
",point_e\diffusion\k_diffusion.py
training_losses,,"def training_losses(self, model, x_start, sigmas, model_kwargs=None, noise=None
    ):
    if model_kwargs is None:
        model_kwargs = {}
    if noise is None:
        noise = th.randn_like(x_start)
    terms = {}
    dims = x_start.ndim
    x_t = x_start + noise * append_dims(sigmas, dims)
    c_skip, c_out, _ = [append_dims(x, dims) for x in self.get_scalings(sigmas)
        ]
    model_output, denoised = self.denoise(model, x_t, sigmas, **model_kwargs)
    target = (x_start - c_skip * x_t) / c_out
    terms['mse'] = mean_flat((model_output - target) ** 2)
    terms['xs_mse'] = mean_flat((denoised - x_start) ** 2)
    if 'vb' in terms:
        terms['loss'] = terms['mse'] + terms['vb']
    else:
        terms['loss'] = terms['mse']
    return terms
",point_e\diffusion\k_diffusion.py
denoise,,"def denoise(self, model, x_t, sigmas, **model_kwargs):
    c_skip, c_out, c_in = [append_dims(x, x_t.ndim) for x in self.
        get_scalings(sigmas)]
    rescaled_t = 1000 * 0.25 * th.log(sigmas + 1e-44)
    model_output = model(c_in * x_t, rescaled_t, **model_kwargs)
    denoised = c_out * model_output + c_skip * x_t
    return model_output, denoised
",point_e\diffusion\k_diffusion.py
__init__,,"def __init__(self, model, diffusion):
    from scipy import interpolate
    self.model = model
    self.diffusion = diffusion
    self.alpha_cumprod_to_t = interpolate.interp1d(diffusion.alphas_cumprod,
        np.arange(0, diffusion.num_timesteps))
",point_e\diffusion\k_diffusion.py
sigma_to_t,,"def sigma_to_t(self, sigma):
    alpha_cumprod = 1.0 / (sigma ** 2 + 1)
    if alpha_cumprod > self.diffusion.alphas_cumprod[0]:
        return 0
    elif alpha_cumprod <= self.diffusion.alphas_cumprod[-1]:
        return self.diffusion.num_timesteps - 1
    else:
        return float(self.alpha_cumprod_to_t(alpha_cumprod))
",point_e\diffusion\k_diffusion.py
denoise,,"def denoise(self, x_t, sigmas, clip_denoised=True, model_kwargs=None):
    t = th.tensor([self.sigma_to_t(sigma) for sigma in sigmas.cpu().numpy()
        ], dtype=th.long, device=sigmas.device)
    c_in = append_dims(1.0 / (sigmas ** 2 + 1) ** 0.5, x_t.ndim)
    out = self.diffusion.p_mean_variance(self.model, x_t * c_in, t,
        clip_denoised=clip_denoised, model_kwargs=model_kwargs)
    return None, out['pred_xstart']
",point_e\diffusion\k_diffusion.py
__init__,,"def __init__(self, device: torch.device, models: Sequence[nn.Module],
    diffusions: Sequence[GaussianDiffusion], num_points: Sequence[int],
    aux_channels: Sequence[str], model_kwargs_key_filter: Sequence[str]=(
    '*',), guidance_scale: Sequence[float]=(3.0, 3.0), clip_denoised: bool=
    True, use_karras: Sequence[bool]=(True, True), karras_steps: Sequence[
    int]=(64, 64), sigma_min: Sequence[float]=(0.001, 0.001), sigma_max:
    Sequence[float]=(120, 160), s_churn: Sequence[float]=(3, 0)):
    n = len(models)
    assert n > 0
    if n > 1:
        if len(guidance_scale) == 1:
            guidance_scale = list(guidance_scale) + [1.0] * (n - 1)
        if len(use_karras) == 1:
            use_karras = use_karras * n
        if len(karras_steps) == 1:
            karras_steps = karras_steps * n
        if len(sigma_min) == 1:
            sigma_min = sigma_min * n
        if len(sigma_max) == 1:
            sigma_max = sigma_max * n
        if len(s_churn) == 1:
            s_churn = s_churn * n
        if len(model_kwargs_key_filter) == 1:
            model_kwargs_key_filter = model_kwargs_key_filter * n
    if len(model_kwargs_key_filter) == 0:
        model_kwargs_key_filter = ['*'] * n
    assert len(guidance_scale) == n
    assert len(use_karras) == n
    assert len(karras_steps) == n
    assert len(sigma_min) == n
    assert len(sigma_max) == n
    assert len(s_churn) == n
    assert len(model_kwargs_key_filter) == n
    self.device = device
    self.num_points = num_points
    self.aux_channels = aux_channels
    self.model_kwargs_key_filter = model_kwargs_key_filter
    self.guidance_scale = guidance_scale
    self.clip_denoised = clip_denoised
    self.use_karras = use_karras
    self.karras_steps = karras_steps
    self.sigma_min = sigma_min
    self.sigma_max = sigma_max
    self.s_churn = s_churn
    self.models = models
    self.diffusions = diffusions
",point_e\diffusion\sampler.py
num_stages,,"@property
def num_stages(self) ->int:
    return len(self.models)
",point_e\diffusion\sampler.py
sample_batch,,"def sample_batch(self, batch_size: int, model_kwargs: Dict[str, Any]
    ) ->torch.Tensor:
    samples = None
    for x in self.sample_batch_progressive(batch_size, model_kwargs):
        samples = x
    return samples
",point_e\diffusion\sampler.py
sample_batch_progressive,,"def sample_batch_progressive(self, batch_size: int, model_kwargs: Dict[str,
    Any]) ->Iterator[torch.Tensor]:
    samples = None
    for model, diffusion, stage_num_points, stage_guidance_scale, stage_use_karras, stage_karras_steps, stage_sigma_min, stage_sigma_max, stage_s_churn, stage_key_filter in zip(
        self.models, self.diffusions, self.num_points, self.guidance_scale,
        self.use_karras, self.karras_steps, self.sigma_min, self.sigma_max,
        self.s_churn, self.model_kwargs_key_filter):
        stage_model_kwargs = model_kwargs.copy()
        if stage_key_filter != '*':
            use_keys = set(stage_key_filter.split(','))
            stage_model_kwargs = {k: v for k, v in stage_model_kwargs.items
                () if k in use_keys}
        if samples is not None:
            stage_model_kwargs['low_res'] = samples
        if hasattr(model, 'cached_model_kwargs'):
            stage_model_kwargs = model.cached_model_kwargs(batch_size,
                stage_model_kwargs)
        sample_shape = batch_size, 3 + len(self.aux_channels), stage_num_points
        if stage_guidance_scale != 1 and stage_guidance_scale != 0:
            for k, v in stage_model_kwargs.copy().items():
                stage_model_kwargs[k] = torch.cat([v, torch.zeros_like(v)],
                    dim=0)
        if stage_use_karras:
            samples_it = karras_sample_progressive(diffusion=diffusion,
                model=model, shape=sample_shape, steps=stage_karras_steps,
                clip_denoised=self.clip_denoised, model_kwargs=
                stage_model_kwargs, device=self.device, sigma_min=
                stage_sigma_min, sigma_max=stage_sigma_max, s_churn=
                stage_s_churn, guidance_scale=stage_guidance_scale)
        else:
            internal_batch_size = batch_size
            if stage_guidance_scale:
                model = self._uncond_guide_model(model, stage_guidance_scale)
                internal_batch_size *= 2
            samples_it = diffusion.p_sample_loop_progressive(model, shape=(
                internal_batch_size, *sample_shape[1:]), model_kwargs=
                stage_model_kwargs, device=self.device, clip_denoised=self.
                clip_denoised)
        for x in samples_it:
            samples = x['pred_xstart'][:batch_size]
            if 'low_res' in stage_model_kwargs:
                samples = torch.cat([stage_model_kwargs['low_res'][:len(
                    samples)], samples], dim=-1)
            yield samples
",point_e\diffusion\sampler.py
combine,,"@classmethod
def combine(cls, *samplers: 'PointCloudSampler') ->'PointCloudSampler':
    assert all(x.device == samplers[0].device for x in samplers[1:])
    assert all(x.aux_channels == samplers[0].aux_channels for x in samplers[1:]
        )
    assert all(x.clip_denoised == samplers[0].clip_denoised for x in
        samplers[1:])
    return cls(device=samplers[0].device, models=[x for y in samplers for x in
        y.models], diffusions=[x for y in samplers for x in y.diffusions],
        num_points=[x for y in samplers for x in y.num_points],
        aux_channels=samplers[0].aux_channels, model_kwargs_key_filter=[x for
        y in samplers for x in y.model_kwargs_key_filter], guidance_scale=[
        x for y in samplers for x in y.guidance_scale], clip_denoised=
        samplers[0].clip_denoised, use_karras=[x for y in samplers for x in
        y.use_karras], karras_steps=[x for y in samplers for x in y.
        karras_steps], sigma_min=[x for y in samplers for x in y.sigma_min],
        sigma_max=[x for y in samplers for x in y.sigma_max], s_churn=[x for
        y in samplers for x in y.s_churn])
",point_e\diffusion\sampler.py
_uncond_guide_model,,"def _uncond_guide_model(self, model: Callable[..., torch.Tensor], scale: float
    ) ->Callable[..., torch.Tensor]:

    def model_fn(x_t, ts, **kwargs):
        half = x_t[:len(x_t) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = model(combined, ts, **kwargs)
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.chunk(eps, 2, dim=0)
        half_eps = uncond_eps + scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)
    return model_fn
",point_e\diffusion\sampler.py
split_model_output,,"def split_model_output(self, output: torch.Tensor, rescale_colors: bool=False
    ) ->Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
    assert len(self.aux_channels) + 3 == output.shape[1
        ], 'there must be three spatial channels before aux'
    pos, joined_aux = output[:, :3], output[:, 3:]
    aux = {}
    for i, name in enumerate(self.aux_channels):
        v = joined_aux[:, i]
        if name in {'R', 'G', 'B', 'A'}:
            v = v.clamp(0, 255).round()
            if rescale_colors:
                v = v / 255.0
        aux[name] = v
    return pos, aux
",point_e\diffusion\sampler.py
output_to_point_clouds,,"def output_to_point_clouds(self, output: torch.Tensor) ->List[PointCloud]:
    res = []
    for sample in output:
        xyz, aux = self.split_model_output(sample[None], rescale_colors=True)
        res.append(PointCloud(coords=xyz[0].t().cpu().numpy(), channels={k:
            v[0].cpu().numpy() for k, v in aux.items()}))
    return res
",point_e\diffusion\sampler.py
with_options,,"def with_options(self, guidance_scale: float, clip_denoised: bool,
    use_karras: Sequence[bool]=(True, True), karras_steps: Sequence[int]=(
    64, 64), sigma_min: Sequence[float]=(0.001, 0.001), sigma_max: Sequence
    [float]=(120, 160), s_churn: Sequence[float]=(3, 0)) ->'PointCloudSampler':
    return PointCloudSampler(device=self.device, models=self.models,
        diffusions=self.diffusions, num_points=self.num_points,
        aux_channels=self.aux_channels, model_kwargs_key_filter=self.
        model_kwargs_key_filter, guidance_scale=guidance_scale,
        clip_denoised=clip_denoised, use_karras=use_karras, karras_steps=
        karras_steps, sigma_min=sigma_min, sigma_max=sigma_max, s_churn=s_churn
        )
",point_e\diffusion\sampler.py
get_torch_devices,,"def get_torch_devices() ->List[Union[str, torch.device]]:
    if torch.cuda.is_available():
        return [torch.device(f'cuda:{i}') for i in range(torch.cuda.
            device_count())]
    else:
        return ['cpu']
",point_e\evals\feature_extractor.py
normalize_point_clouds,,"def normalize_point_clouds(pc: np.ndarray) ->np.ndarray:
    centroids = np.mean(pc, axis=1, keepdims=True)
    pc = pc - centroids
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=-1, keepdims=True)), axis=1,
        keepdims=True)
    pc = pc / m
    return pc
",point_e\evals\feature_extractor.py
supports_predictions,,"@property
@abstractmethod
def supports_predictions(self) ->bool:
    pass
",point_e\evals\feature_extractor.py
feature_dim,,"@property
@abstractmethod
def feature_dim(self) ->int:
    pass
",point_e\evals\feature_extractor.py
num_classes,,"@property
@abstractmethod
def num_classes(self) ->int:
    pass
",point_e\evals\feature_extractor.py
features_and_preds,"For a stream of point cloud batches, compute feature vectors and class
predictions.

:param point_clouds: a streamer for a sample batch. Typically, arr_0
                     will contain the XYZ coordinates.
:return: a tuple (features, predictions)
         - features: a [B x feature_dim] array of feature vectors.
         - predictions: a [B x num_classes] array of probabilities.","@abstractmethod
def features_and_preds(self, streamer: NpzStreamer) ->Tuple[np.ndarray, np.
    ndarray]:
    """"""""""""
",point_e\evals\feature_extractor.py
__init__,,"def __init__(self, devices: List[Union[str, torch.device]],
    device_batch_size: int=64, cache_dir: Optional[str]=None):
    state_dict = load_checkpoint('pointnet', device=torch.device('cpu'),
        cache_dir=cache_dir)['model_state_dict']
    self.device_batch_size = device_batch_size
    self.devices = devices
    self.models = []
    for device in devices:
        model = get_model(num_class=40, normal_channel=False, width_mult=2)
        model.load_state_dict(state_dict)
        model.to(device)
        model.eval()
        self.models.append(model)
",point_e\evals\feature_extractor.py
supports_predictions,,"@property
def supports_predictions(self) ->bool:
    return True
",point_e\evals\feature_extractor.py
feature_dim,,"@property
def feature_dim(self) ->int:
    return 256
",point_e\evals\feature_extractor.py
num_classes,,"@property
def num_classes(self) ->int:
    return 40
",point_e\evals\feature_extractor.py
features_and_preds,,"def features_and_preds(self, streamer: NpzStreamer) ->Tuple[np.ndarray, np.
    ndarray]:
    batch_size = self.device_batch_size * len(self.devices)
    point_clouds = (x['arr_0'] for x in streamer.stream(batch_size, ['arr_0']))
    output_features = []
    output_predictions = []
    with ThreadPool(len(self.devices)) as pool:
        for batch in point_clouds:
            batch = normalize_point_clouds(batch)
            batches = []
            for i, device in zip(range(0, len(batch), self.
                device_batch_size), self.devices):
                batches.append(torch.from_numpy(batch[i:i + self.
                    device_batch_size]).permute(0, 2, 1).to(dtype=torch.
                    float32, device=device))

            def compute_features(i_batch):
                i, batch = i_batch
                with torch.no_grad():
                    return self.models[i](batch, features=True)
            for logits, _, features in pool.imap(compute_features,
                enumerate(batches)):
                output_features.append(features.cpu().numpy())
                output_predictions.append(logits.exp().cpu().numpy())
    return np.concatenate(output_features, axis=0), np.concatenate(
        output_predictions, axis=0)
",point_e\evals\feature_extractor.py
compute_statistics,,"def compute_statistics(feats: np.ndarray) ->FIDStatistics:
    mu = np.mean(feats, axis=0)
    sigma = np.cov(feats, rowvar=False)
    return FIDStatistics(mu, sigma)
",point_e\evals\fid_is.py
compute_inception_score,,"def compute_inception_score(preds: np.ndarray, split_size: int=5000) ->float:
    scores = []
    for i in range(0, len(preds), split_size):
        part = preds[i:i + split_size]
        kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))
            )
        kl = np.mean(np.sum(kl, 1))
        scores.append(np.exp(kl))
    return float(np.mean(scores))
",point_e\evals\fid_is.py
__init__,,"def __init__(self, mu: np.ndarray, sigma: np.ndarray):
    self.mu = mu
    self.sigma = sigma
",point_e\evals\fid_is.py
frechet_distance,Compute the Frechet distance between two sets of statistics.,"def frechet_distance(self, other, eps=1e-06):
    """"""""""""
    mu1, sigma1 = self.mu, self.sigma
    mu2, sigma2 = other.mu, other.sigma
    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)
    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)
    assert mu1.shape == mu2.shape, f'Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}'
    assert sigma1.shape == sigma2.shape, f'Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}'
    diff = mu1 - mu2
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = (
            'fid calculation produces singular product; adding %s to diagonal of cov estimates'
             % eps)
        warnings.warn(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=0.001):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real
    tr_covmean = np.trace(covmean)
    return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2
        ) - 2 * tr_covmean
",point_e\evals\fid_is.py
_npz_paths_and_length,,"def _npz_paths_and_length(glob_path: str) ->Tuple[List[str], Optional[int]]:
    count_match = re.match('^(.*)\\[:([0-9]*)\\]$', glob_path)
    if count_match:
        raw_path = count_match[1]
        max_count = int(count_match[2])
    else:
        raw_path = glob_path
        max_count = None
    paths = sorted(glob.glob(raw_path))
    if not len(paths):
        raise ValueError(f'no paths found matching: {glob_path}')
    return paths, max_count
",point_e\evals\npz_stream.py
open_npz_arrays,,"@contextmanager
def open_npz_arrays(path: str, arr_names: Sequence[str]) ->List[NpzArrayReader
    ]:
    if not len(arr_names):
        yield []
        return
    arr_name = arr_names[0]
    with open_array(path, arr_name) as arr_f:
        version = np.lib.format.read_magic(arr_f)
        header = None
        if version == (1, 0):
            header = np.lib.format.read_array_header_1_0(arr_f)
        elif version == (2, 0):
            header = np.lib.format.read_array_header_2_0(arr_f)
        if header is None:
            reader = MemoryNpzArrayReader.load(path, arr_name)
        else:
            shape, fortran, dtype = header
            if fortran or dtype.hasobject:
                reader = MemoryNpzArrayReader.load(path, arr_name)
            else:
                reader = StreamingNpzArrayReader(arr_f, shape, dtype)
        with open_npz_arrays(path, arr_names[1:]) as next_readers:
            yield [reader] + next_readers
",point_e\evals\npz_stream.py
_read_bytes,"Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886

Read from file-like object until size bytes are read.
Raises ValueError if not EOF is encountered before size bytes are read.
Non-blocking objects only supported if they derive from io objects.
Required as e.g. ZipExtFile in python 2.6 can return less data than
requested.","def _read_bytes(fp, size, error_template='ran out of data'):
    """"""""""""
    data = bytes()
    while True:
        try:
            r = fp.read(size - len(data))
            data += r
            if len(r) == 0 or len(data) == size:
                break
        except io.BlockingIOError:
            pass
    if len(data) != size:
        msg = 'EOF: reading %s, expected %d bytes got %d'
        raise ValueError(msg % (error_template, size, len(data)))
    else:
        return data
",point_e\evals\npz_stream.py
open_array,,"@contextmanager
def open_array(path: str, arr_name: str):
    with open(path, 'rb') as f:
        with zipfile.ZipFile(f, 'r') as zip_f:
            if f'{arr_name}.npy' not in zip_f.namelist():
                raise ValueError(f'missing {arr_name} in npz file')
            with zip_f.open(f'{arr_name}.npy', 'r') as arr_f:
                yield arr_f
",point_e\evals\npz_stream.py
_dict_batch_size,,"def _dict_batch_size(objs: Dict[str, np.ndarray]) ->int:
    return len(next(iter(objs.values())))
",point_e\evals\npz_stream.py
infos_from_first_file,,"@classmethod
def infos_from_first_file(cls, glob_path: str) ->Dict[str, 'NumpyArrayInfo']:
    paths, _ = _npz_paths_and_length(glob_path)
    return cls.infos_from_file(paths[0])
",point_e\evals\npz_stream.py
infos_from_file,Extract the info of every array in an npz file.,"@classmethod
def infos_from_file(cls, npz_path: str) ->Dict[str, 'NumpyArrayInfo']:
    """"""""""""
    if not os.path.exists(npz_path):
        raise FileNotFoundError(f'batch of samples was not found: {npz_path}')
    results = {}
    with open(npz_path, 'rb') as f:
        with zipfile.ZipFile(f, 'r') as zip_f:
            for name in zip_f.namelist():
                if not name.endswith('.npy'):
                    continue
                key_name = name[:-len('.npy')]
                with zip_f.open(name, 'r') as arr_f:
                    version = np.lib.format.read_magic(arr_f)
                    if version == (1, 0):
                        header = np.lib.format.read_array_header_1_0(arr_f)
                    elif version == (2, 0):
                        header = np.lib.format.read_array_header_2_0(arr_f)
                    else:
                        raise ValueError(
                            f'unknown numpy array version: {version}')
                    shape, _, dtype = header
                    results[key_name] = cls(name=key_name, dtype=dtype,
                        shape=shape)
    return results
",point_e\evals\npz_stream.py
elem_shape,,"@property
def elem_shape(self) ->Tuple[int]:
    return self.shape[1:]
",point_e\evals\npz_stream.py
validate,,"def validate(self):
    if self.name in {'R', 'G', 'B'}:
        if len(self.shape) != 2:
            raise ValueError(
                f""expecting exactly 2-D shape for '{self.name}' but got: {self.shape}""
                )
    elif self.name == 'arr_0':
        if len(self.shape) < 2:
            raise ValueError(
                f'expecting at least 2-D shape but got: {self.shape}')
        elif len(self.shape) == 3:
            if not np.issubdtype(self.dtype, np.floating):
                raise ValueError(
                    f'invalid dtype for audio batch: {self.dtype} (expected float)'
                    )
        elif self.dtype != np.uint8:
            raise ValueError(
                f'invalid dtype for image batch: {self.dtype} (expected uint8)'
                )
",point_e\evals\npz_stream.py
__init__,,"def __init__(self, glob_path: str):
    self.paths, self.trunc_length = _npz_paths_and_length(glob_path)
    self.infos = NumpyArrayInfo.infos_from_file(self.paths[0])
",point_e\evals\npz_stream.py
keys,,"def keys(self) ->List[str]:
    return list(self.infos.keys())
",point_e\evals\npz_stream.py
stream,,"def stream(self, batch_size: int, keys: Sequence[str]) ->Iterator[Dict[str,
    np.ndarray]]:
    cur_batch = None
    num_remaining = self.trunc_length
    for path in self.paths:
        if num_remaining is not None and num_remaining <= 0:
            break
        with open_npz_arrays(path, keys) as readers:
            combined_reader = CombinedReader(keys, readers)
            while num_remaining is None or num_remaining > 0:
                read_bs = batch_size
                if cur_batch is not None:
                    read_bs -= _dict_batch_size(cur_batch)
                if num_remaining is not None:
                    read_bs = min(read_bs, num_remaining)
                batch = combined_reader.read_batch(read_bs)
                if batch is None:
                    break
                if num_remaining is not None:
                    num_remaining -= _dict_batch_size(batch)
                if cur_batch is None:
                    cur_batch = batch
                else:
                    cur_batch = {k: np.concatenate([cur_batch[k], v], axis=
                        0) for k, v in batch.items()}
                if _dict_batch_size(cur_batch) == batch_size:
                    yield cur_batch
                    cur_batch = None
    if cur_batch is not None:
        yield cur_batch
",point_e\evals\npz_stream.py
read_batch,,"@abstractmethod
def read_batch(self, batch_size: int) ->Optional[np.ndarray]:
    pass
",point_e\evals\npz_stream.py
__init__,,"def __init__(self, arr_f, shape, dtype):
    self.arr_f = arr_f
    self.shape = shape
    self.dtype = dtype
    self.idx = 0
",point_e\evals\npz_stream.py
read_batch,,"def read_batch(self, batch_size: int) ->Optional[np.ndarray]:
    if self.idx >= self.shape[0]:
        return None
    bs = min(batch_size, self.shape[0] - self.idx)
    self.idx += bs
    if self.dtype.itemsize == 0:
        return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
    read_count = bs * np.prod(self.shape[1:])
    read_size = int(read_count * self.dtype.itemsize)
    data = _read_bytes(self.arr_f, read_size, 'array data')
    return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
",point_e\evals\npz_stream.py
__init__,,"def __init__(self, arr):
    self.arr = arr
    self.idx = 0
",point_e\evals\npz_stream.py
load,,"@classmethod
def load(cls, path: str, arr_name: str):
    with open(path, 'rb') as f:
        arr = np.load(f)[arr_name]
    return cls(arr)
",point_e\evals\npz_stream.py
read_batch,,"def read_batch(self, batch_size: int) ->Optional[np.ndarray]:
    if self.idx >= self.arr.shape[0]:
        return None
    res = self.arr[self.idx:self.idx + batch_size]
    self.idx += batch_size
    return res
",point_e\evals\npz_stream.py
__init__,,"def __init__(self, keys: List[str], readers: List[NpzArrayReader]):
    self.keys = keys
    self.readers = readers
",point_e\evals\npz_stream.py
read_batch,,"def read_batch(self, batch_size: int) ->Optional[Dict[str, np.ndarray]]:
    batches = [r.read_batch(batch_size) for r in self.readers]
    any_none = any(x is None for x in batches)
    all_none = all(x is None for x in batches)
    if any_none != all_none:
        raise RuntimeError('different keys had different numbers of elements')
    if any_none:
        return None
    if any(len(x) != len(batches[0]) for x in batches):
        raise RuntimeError('different keys had different numbers of elements')
    return dict(zip(self.keys, batches))
",point_e\evals\npz_stream.py
__init__,,"def __init__(self, num_class, normal_channel=True, width_mult=1):
    super(get_model, self).__init__()
    self.width_mult = width_mult
    in_channel = 6 if normal_channel else 3
    self.normal_channel = normal_channel
    self.sa1 = PointNetSetAbstraction(npoint=512, radius=0.2, nsample=32,
        in_channel=in_channel, mlp=[64 * width_mult, 64 * width_mult, 128 *
        width_mult], group_all=False)
    self.sa2 = PointNetSetAbstraction(npoint=128, radius=0.4, nsample=64,
        in_channel=128 * width_mult + 3, mlp=[128 * width_mult, 128 *
        width_mult, 256 * width_mult], group_all=False)
    self.sa3 = PointNetSetAbstraction(npoint=None, radius=None, nsample=
        None, in_channel=256 * width_mult + 3, mlp=[256 * width_mult, 512 *
        width_mult, 1024 * width_mult], group_all=True)
    self.fc1 = nn.Linear(1024 * width_mult, 512 * width_mult)
    self.bn1 = nn.BatchNorm1d(512 * width_mult)
    self.drop1 = nn.Dropout(0.4)
    self.fc2 = nn.Linear(512 * width_mult, 256 * width_mult)
    self.bn2 = nn.BatchNorm1d(256 * width_mult)
    self.drop2 = nn.Dropout(0.4)
    self.fc3 = nn.Linear(256 * width_mult, num_class)
",point_e\evals\pointnet2_cls_ssg.py
forward,,"def forward(self, xyz, features=False):
    B, _, _ = xyz.shape
    if self.normal_channel:
        norm = xyz[:, 3:, :]
        xyz = xyz[:, :3, :]
    else:
        norm = None
    l1_xyz, l1_points = self.sa1(xyz, norm)
    l2_xyz, l2_points = self.sa2(l1_xyz, l1_points)
    l3_xyz, l3_points = self.sa3(l2_xyz, l2_points)
    x = l3_points.view(B, 1024 * self.width_mult)
    x = self.drop1(F.relu(self.bn1(self.fc1(x))))
    result_features = self.bn2(self.fc2(x))
    x = self.drop2(F.relu(result_features))
    x = self.fc3(x)
    x = F.log_softmax(x, -1)
    if features:
        return x, l3_points, result_features
    else:
        return x, l3_points
",point_e\evals\pointnet2_cls_ssg.py
__init__,,"def __init__(self):
    super(get_loss, self).__init__()
",point_e\evals\pointnet2_cls_ssg.py
forward,,"def forward(self, pred, target, trans_feat):
    total_loss = F.nll_loss(pred, target)
    return total_loss
",point_e\evals\pointnet2_cls_ssg.py
timeit,,"def timeit(tag, t):
    print('{}: {}s'.format(tag, time() - t))
    return time()
",point_e\evals\pointnet2_utils.py
pc_normalize,,"def pc_normalize(pc):
    l = pc.shape[0]
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc
",point_e\evals\pointnet2_utils.py
square_distance,"Calculate Euclid distance between each two points.

src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
     = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst

Input:
    src: source points, [B, N, C]
    dst: target points, [B, M, C]
Output:
    dist: per-point square distance, [B, N, M]","def square_distance(src, dst):
    """"""""""""
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist
",point_e\evals\pointnet2_utils.py
index_points,"Input:
    points: input points data, [B, N, C]
    idx: sample index data, [B, S]
Return:
    new_points:, indexed points data, [B, S, C]","def index_points(points, idx):
    """"""""""""
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(
        view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points
",point_e\evals\pointnet2_utils.py
farthest_point_sample,"Input:
    xyz: pointcloud data, [B, N, 3]
    npoint: number of samples
Return:
    centroids: sampled pointcloud index, [B, npoint]","def farthest_point_sample(xyz, npoint, deterministic=False):
    """"""""""""
    device = xyz.device
    B, N, C = xyz.shape
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
    distance = torch.ones(B, N).to(device) * 10000000000.0
    if deterministic:
        farthest = torch.arange(0, B, dtype=torch.long).to(device)
    else:
        farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
    batch_indices = torch.arange(B, dtype=torch.long).to(device)
    for i in range(npoint):
        centroids[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
        dist = torch.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = torch.max(distance, -1)[1]
    return centroids
",point_e\evals\pointnet2_utils.py
query_ball_point,"Input:
    radius: local region radius
    nsample: max sample number in local region
    xyz: all points, [B, N, 3]
    new_xyz: query points, [B, S, 3]
Return:
    group_idx: grouped points index, [B, S, nsample]","def query_ball_point(radius, nsample, xyz, new_xyz):
    """"""""""""
    device = xyz.device
    B, N, C = xyz.shape
    _, S, _ = new_xyz.shape
    group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N
        ).repeat([B, S, 1])
    sqrdists = square_distance(new_xyz, xyz)
    group_idx[sqrdists > radius ** 2] = N
    group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
    group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
    mask = group_idx == N
    group_idx[mask] = group_first[mask]
    return group_idx
",point_e\evals\pointnet2_utils.py
sample_and_group,"Input:
    npoint:
    radius:
    nsample:
    xyz: input points position data, [B, N, 3]
    points: input points data, [B, N, D]
Return:
    new_xyz: sampled points position data, [B, npoint, nsample, 3]
    new_points: sampled points data, [B, npoint, nsample, 3+D]","def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False,
    deterministic=False):
    """"""""""""
    B, N, C = xyz.shape
    S = npoint
    fps_idx = farthest_point_sample(xyz, npoint, deterministic=deterministic)
    new_xyz = index_points(xyz, fps_idx)
    idx = query_ball_point(radius, nsample, xyz, new_xyz)
    grouped_xyz = index_points(xyz, idx)
    grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
    if points is not None:
        grouped_points = index_points(points, idx)
        new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1)
    else:
        new_points = grouped_xyz_norm
    if returnfps:
        return new_xyz, new_points, grouped_xyz, fps_idx
    else:
        return new_xyz, new_points
",point_e\evals\pointnet2_utils.py
sample_and_group_all,"Input:
    xyz: input points position data, [B, N, 3]
    points: input points data, [B, N, D]
Return:
    new_xyz: sampled points position data, [B, 1, 3]
    new_points: sampled points data, [B, 1, N, 3+D]","def sample_and_group_all(xyz, points):
    """"""""""""
    device = xyz.device
    B, N, C = xyz.shape
    new_xyz = torch.zeros(B, 1, C).to(device)
    grouped_xyz = xyz.view(B, 1, N, C)
    if points is not None:
        new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
    else:
        new_points = grouped_xyz
    return new_xyz, new_points
",point_e\evals\pointnet2_utils.py
__init__,,"def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):
    super(PointNetSetAbstraction, self).__init__()
    self.npoint = npoint
    self.radius = radius
    self.nsample = nsample
    self.mlp_convs = nn.ModuleList()
    self.mlp_bns = nn.ModuleList()
    last_channel = in_channel
    for out_channel in mlp:
        self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
        self.mlp_bns.append(nn.BatchNorm2d(out_channel))
        last_channel = out_channel
    self.group_all = group_all
",point_e\evals\pointnet2_utils.py
forward,"Input:
    xyz: input points position data, [B, C, N]
    points: input points data, [B, D, N]
Return:
    new_xyz: sampled points position data, [B, C, S]
    new_points_concat: sample points feature data, [B, D', S]","def forward(self, xyz, points):
    """"""""""""
    xyz = xyz.permute(0, 2, 1)
    if points is not None:
        points = points.permute(0, 2, 1)
    if self.group_all:
        new_xyz, new_points = sample_and_group_all(xyz, points)
    else:
        new_xyz, new_points = sample_and_group(self.npoint, self.radius,
            self.nsample, xyz, points, deterministic=not self.training)
    new_points = new_points.permute(0, 3, 2, 1)
    for i, conv in enumerate(self.mlp_convs):
        bn = self.mlp_bns[i]
        new_points = F.relu(bn(conv(new_points)))
    new_points = torch.max(new_points, 2)[0]
    new_xyz = new_xyz.permute(0, 2, 1)
    return new_xyz, new_points
",point_e\evals\pointnet2_utils.py
__init__,,"def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list):
    super(PointNetSetAbstractionMsg, self).__init__()
    self.npoint = npoint
    self.radius_list = radius_list
    self.nsample_list = nsample_list
    self.conv_blocks = nn.ModuleList()
    self.bn_blocks = nn.ModuleList()
    for i in range(len(mlp_list)):
        convs = nn.ModuleList()
        bns = nn.ModuleList()
        last_channel = in_channel + 3
        for out_channel in mlp_list[i]:
            convs.append(nn.Conv2d(last_channel, out_channel, 1))
            bns.append(nn.BatchNorm2d(out_channel))
            last_channel = out_channel
        self.conv_blocks.append(convs)
        self.bn_blocks.append(bns)
",point_e\evals\pointnet2_utils.py
forward,"Input:
    xyz: input points position data, [B, C, N]
    points: input points data, [B, D, N]
Return:
    new_xyz: sampled points position data, [B, C, S]
    new_points_concat: sample points feature data, [B, D', S]","def forward(self, xyz, points):
    """"""""""""
    xyz = xyz.permute(0, 2, 1)
    if points is not None:
        points = points.permute(0, 2, 1)
    B, N, C = xyz.shape
    S = self.npoint
    new_xyz = index_points(xyz, farthest_point_sample(xyz, S, deterministic
        =not self.training))
    new_points_list = []
    for i, radius in enumerate(self.radius_list):
        K = self.nsample_list[i]
        group_idx = query_ball_point(radius, K, xyz, new_xyz)
        grouped_xyz = index_points(xyz, group_idx)
        grouped_xyz -= new_xyz.view(B, S, 1, C)
        if points is not None:
            grouped_points = index_points(points, group_idx)
            grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)
        else:
            grouped_points = grouped_xyz
        grouped_points = grouped_points.permute(0, 3, 2, 1)
        for j in range(len(self.conv_blocks[i])):
            conv = self.conv_blocks[i][j]
            bn = self.bn_blocks[i][j]
            grouped_points = F.relu(bn(conv(grouped_points)))
        new_points = torch.max(grouped_points, 2)[0]
        new_points_list.append(new_points)
    new_xyz = new_xyz.permute(0, 2, 1)
    new_points_concat = torch.cat(new_points_list, dim=1)
    return new_xyz, new_points_concat
",point_e\evals\pointnet2_utils.py
__init__,,"def __init__(self, in_channel, mlp):
    super(PointNetFeaturePropagation, self).__init__()
    self.mlp_convs = nn.ModuleList()
    self.mlp_bns = nn.ModuleList()
    last_channel = in_channel
    for out_channel in mlp:
        self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1))
        self.mlp_bns.append(nn.BatchNorm1d(out_channel))
        last_channel = out_channel
",point_e\evals\pointnet2_utils.py
forward,"Input:
    xyz1: input points position data, [B, C, N]
    xyz2: sampled input points position data, [B, C, S]
    points1: input points data, [B, D, N]
    points2: input points data, [B, D, S]
Return:
    new_points: upsampled points data, [B, D', N]","def forward(self, xyz1, xyz2, points1, points2):
    """"""""""""
    xyz1 = xyz1.permute(0, 2, 1)
    xyz2 = xyz2.permute(0, 2, 1)
    points2 = points2.permute(0, 2, 1)
    B, N, C = xyz1.shape
    _, S, _ = xyz2.shape
    if S == 1:
        interpolated_points = points2.repeat(1, N, 1)
    else:
        dists = square_distance(xyz1, xyz2)
        dists, idx = dists.sort(dim=-1)
        dists, idx = dists[:, :, :3], idx[:, :, :3]
        dist_recip = 1.0 / (dists + 1e-08)
        norm = torch.sum(dist_recip, dim=2, keepdim=True)
        weight = dist_recip / norm
        interpolated_points = torch.sum(index_points(points2, idx) * weight
            .view(B, N, 3, 1), dim=2)
    if points1 is not None:
        points1 = points1.permute(0, 2, 1)
        new_points = torch.cat([points1, interpolated_points], dim=-1)
    else:
        new_points = interpolated_points
    new_points = new_points.permute(0, 2, 1)
    for i, conv in enumerate(self.mlp_convs):
        bn = self.mlp_bns[i]
        new_points = F.relu(bn(conv(new_points)))
    return new_points
",point_e\evals\pointnet2_utils.py
clear_scene,,"def clear_scene():
    bpy.ops.object.select_all(action='SELECT')
    bpy.ops.object.delete()
",point_e\evals\scripts\blender_script.py
clear_lights,,"def clear_lights():
    bpy.ops.object.select_all(action='DESELECT')
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, bpy.types.Light):
            obj.select_set(True)
    bpy.ops.object.delete()
",point_e\evals\scripts\blender_script.py
import_model,,"def import_model(path):
    clear_scene()
    _, ext = os.path.splitext(path)
    ext = ext.lower()
    if ext == '.obj':
        bpy.ops.import_scene.obj(filepath=path)
    elif ext in ['.glb', '.gltf']:
        bpy.ops.import_scene.gltf(filepath=path)
    elif ext == '.stl':
        bpy.ops.import_mesh.stl(filepath=path)
    elif ext == '.fbx':
        bpy.ops.import_scene.fbx(filepath=path)
    elif ext == '.dae':
        bpy.ops.wm.collada_import(filepath=path)
    elif ext == '.ply':
        bpy.ops.import_mesh.ply(filepath=path)
    else:
        raise RuntimeError(f'unexpected extension: {ext}')
",point_e\evals\scripts\blender_script.py
scene_root_objects,,"def scene_root_objects():
    for obj in bpy.context.scene.objects.values():
        if not obj.parent:
            yield obj
",point_e\evals\scripts\blender_script.py
scene_bbox,,"def scene_bbox(single_obj=None, ignore_matrix=False):
    bbox_min = (math.inf,) * 3
    bbox_max = (-math.inf,) * 3
    found = False
    for obj in (scene_meshes() if single_obj is None else [single_obj]):
        found = True
        for coord in obj.bound_box:
            coord = Vector(coord)
            if not ignore_matrix:
                coord = obj.matrix_world @ coord
            bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
            bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
    if not found:
        raise RuntimeError('no objects in scene to compute bounding box for')
    return Vector(bbox_min), Vector(bbox_max)
",point_e\evals\scripts\blender_script.py
scene_meshes,,"def scene_meshes():
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, bpy.types.Mesh):
            yield obj
",point_e\evals\scripts\blender_script.py
normalize_scene,,"def normalize_scene():
    bbox_min, bbox_max = scene_bbox()
    scale = 1 / max(bbox_max - bbox_min)
    for obj in scene_root_objects():
        obj.scale = obj.scale * scale
    bpy.context.view_layer.update()
    bbox_min, bbox_max = scene_bbox()
    offset = -(bbox_min + bbox_max) / 2
    for obj in scene_root_objects():
        obj.matrix_world.translation += offset
    bpy.ops.object.select_all(action='DESELECT')
",point_e\evals\scripts\blender_script.py
create_camera,,"def create_camera():
    camera_data = bpy.data.cameras.new(name='Camera')
    camera_object = bpy.data.objects.new('Camera', camera_data)
    bpy.context.scene.collection.objects.link(camera_object)
    bpy.context.scene.camera = camera_object
",point_e\evals\scripts\blender_script.py
set_camera,,"def set_camera(direction, camera_dist=2.0):
    camera_pos = -camera_dist * direction
    bpy.context.scene.camera.location = camera_pos
    rot_quat = direction.to_track_quat('-Z', 'Y')
    bpy.context.scene.camera.rotation_euler = rot_quat.to_euler()
    bpy.context.view_layer.update()
",point_e\evals\scripts\blender_script.py
randomize_camera,,"def randomize_camera(camera_dist=2.0):
    direction = random_unit_vector()
    set_camera(direction, camera_dist=camera_dist)
",point_e\evals\scripts\blender_script.py
pan_camera,,"def pan_camera(time, axis='Z', camera_dist=2.0, elevation=-0.1):
    angle = time * math.pi * 2
    direction = [-math.cos(angle), -math.sin(angle), -elevation]
    assert axis in ['X', 'Y', 'Z']
    if axis == 'X':
        direction = [direction[2], *direction[:2]]
    elif axis == 'Y':
        direction = [direction[0], -elevation, direction[1]]
    direction = Vector(direction).normalized()
    set_camera(direction, camera_dist=camera_dist)
",point_e\evals\scripts\blender_script.py
place_camera,,"def place_camera(time, camera_pose_mode='random', camera_dist_min=2.0,
    camera_dist_max=2.0):
    camera_dist = random.uniform(camera_dist_min, camera_dist_max)
    if camera_pose_mode == 'random':
        randomize_camera(camera_dist=camera_dist)
    elif camera_pose_mode == 'z-circular':
        pan_camera(time, axis='Z', camera_dist=camera_dist)
    elif camera_pose_mode == 'z-circular-elevated':
        pan_camera(time, axis='Z', camera_dist=camera_dist, elevation=
            0.2617993878)
    else:
        raise ValueError(f'Unknown camera pose mode: {camera_pose_mode}')
",point_e\evals\scripts\blender_script.py
create_light,,"def create_light(location, energy=1.0, angle=0.5 * math.pi / 180):
    light_data = bpy.data.lights.new(name='Light', type='SUN')
    light_data.energy = energy
    light_data.angle = angle
    light_object = bpy.data.objects.new(name='Light', object_data=light_data)
    direction = -location
    rot_quat = direction.to_track_quat('-Z', 'Y')
    light_object.rotation_euler = rot_quat.to_euler()
    bpy.context.view_layer.update()
    bpy.context.collection.objects.link(light_object)
    light_object.location = location
",point_e\evals\scripts\blender_script.py
create_random_lights,,"def create_random_lights(count=4, distance=2.0, energy=1.5):
    clear_lights()
    for _ in range(count):
        create_light(random_unit_vector() * distance, energy=energy)
",point_e\evals\scripts\blender_script.py
create_camera_light,,"def create_camera_light():
    clear_lights()
    create_light(bpy.context.scene.camera.location, energy=5.0)
",point_e\evals\scripts\blender_script.py
create_uniform_light,,"def create_uniform_light(backend):
    clear_lights()
    pos = Vector(UNIFORM_LIGHT_DIRECTION)
    angle = 0.0092 if backend == 'CYCLES' else math.pi
    create_light(pos, energy=5.0, angle=angle)
    create_light(-pos, energy=5.0, angle=angle)
",point_e\evals\scripts\blender_script.py
create_vertex_color_shaders,,"def create_vertex_color_shaders():
    for obj in bpy.context.scene.objects.values():
        if not isinstance(obj.data, bpy.types.Mesh):
            continue
        if len(obj.data.materials):
            continue
        color_keys = (obj.data.vertex_colors or {}).keys()
        if not len(color_keys):
            continue
        mat = bpy.data.materials.new(name='VertexColored')
        mat.use_nodes = True
        bsdf_node = None
        for node in mat.node_tree.nodes:
            if node.type == 'BSDF_PRINCIPLED':
                bsdf_node = node
        assert bsdf_node is not None, 'material has no Principled BSDF node to modify'
        socket_map = {}
        for input in bsdf_node.inputs:
            socket_map[input.name] = input
        socket_map['Specular'].default_value = 0.0
        socket_map['Roughness'].default_value = 1.0
        v_color = mat.node_tree.nodes.new('ShaderNodeVertexColor')
        v_color.layer_name = color_keys[0]
        mat.node_tree.links.new(v_color.outputs[0], socket_map['Base Color'])
        obj.data.materials.append(mat)
",point_e\evals\scripts\blender_script.py
create_default_materials,,"def create_default_materials():
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, bpy.types.Mesh):
            if not len(obj.data.materials):
                mat = bpy.data.materials.new(name='DefaultMaterial')
                mat.use_nodes = True
                obj.data.materials.append(mat)
",point_e\evals\scripts\blender_script.py
find_materials,,"def find_materials():
    all_materials = set()
    for obj in bpy.context.scene.objects.values():
        if not isinstance(obj.data, bpy.types.Mesh):
            continue
        for mat in obj.data.materials:
            all_materials.add(mat)
    return all_materials
",point_e\evals\scripts\blender_script.py
get_socket_value,,"def get_socket_value(tree, socket):
    default = socket.default_value
    if not isinstance(default, float):
        default = list(default)
    for link in tree.links:
        if link.to_socket == socket:
            return link.from_socket, default
    return None, default
",point_e\evals\scripts\blender_script.py
clear_socket_input,,"def clear_socket_input(tree, socket):
    for link in list(tree.links):
        if link.to_socket == socket:
            tree.links.remove(link)
",point_e\evals\scripts\blender_script.py
set_socket_value,,"def set_socket_value(tree, socket, socket_and_default):
    clear_socket_input(tree, socket)
    old_source_socket, default = socket_and_default
    if isinstance(default, float) and not isinstance(socket.default_value,
        float):
        socket.default_value = [default] * 3 + [1.0]
    else:
        socket.default_value = default
    if old_source_socket is not None:
        tree.links.new(old_source_socket, socket)
",point_e\evals\scripts\blender_script.py
setup_nodes,,"def setup_nodes(output_path, capturing_material_alpha: bool=False):
    tree = bpy.context.scene.node_tree
    links = tree.links
    for node in tree.nodes:
        tree.nodes.remove(node)

    def node_op(op: str, *args, clamp=False):
        node = tree.nodes.new(type='CompositorNodeMath')
        node.operation = op
        if clamp:
            node.use_clamp = True
        for i, arg in enumerate(args):
            if isinstance(arg, (int, float)):
                node.inputs[i].default_value = arg
            else:
                links.new(arg, node.inputs[i])
        return node.outputs[0]

    def node_clamp(x, maximum=1.0):
        return node_op('MINIMUM', x, maximum)

    def node_mul(x, y, **kwargs):
        return node_op('MULTIPLY', x, y, **kwargs)
    input_node = tree.nodes.new(type='CompositorNodeRLayers')
    input_node.scene = bpy.context.scene
    input_sockets = {}
    for output in input_node.outputs:
        input_sockets[output.name] = output
    if capturing_material_alpha:
        color_socket = input_sockets['Image']
    else:
        raw_color_socket = input_sockets['Image']
        color_node = tree.nodes.new(type='CompositorNodeConvertColorSpace')
        color_node.from_color_space = 'Linear'
        color_node.to_color_space = 'sRGB'
        tree.links.new(raw_color_socket, color_node.inputs[0])
        color_socket = color_node.outputs[0]
    split_node = tree.nodes.new(type='CompositorNodeSepRGBA')
    tree.links.new(color_socket, split_node.inputs[0])
    for i, channel in (enumerate('rgba') if not capturing_material_alpha else
        [(0, 'MatAlpha')]):
        output_node = tree.nodes.new(type='CompositorNodeOutputFile')
        output_node.base_path = f'{output_path}_{channel}'
        links.new(split_node.outputs[i], output_node.inputs[0])
    if capturing_material_alpha:
        return
    depth_out = node_clamp(node_mul(input_sockets['Depth'], 1 / MAX_DEPTH))
    output_node = tree.nodes.new(type='CompositorNodeOutputFile')
    output_node.base_path = f'{output_path}_depth'
    links.new(depth_out, output_node.inputs[0])
",point_e\evals\scripts\blender_script.py
render_scene,,"def render_scene(output_path, fast_mode: bool):
    use_workbench = bpy.context.scene.render.engine == 'BLENDER_WORKBENCH'
    if use_workbench:
        bpy.context.scene.render.engine = 'BLENDER_EEVEE'
        bpy.context.scene.eevee.taa_render_samples = 1
    if fast_mode:
        if bpy.context.scene.render.engine == 'BLENDER_EEVEE':
            bpy.context.scene.eevee.taa_render_samples = 1
        elif bpy.context.scene.render.engine == 'CYCLES':
            bpy.context.scene.cycles.samples = 256
    elif bpy.context.scene.render.engine == 'CYCLES':
        bpy.context.scene.cycles.time_limit = 40
    bpy.context.view_layer.update()
    bpy.context.scene.use_nodes = True
    bpy.context.scene.view_layers['ViewLayer'].use_pass_z = True
    bpy.context.scene.view_settings.view_transform = 'Raw'
    bpy.context.scene.render.film_transparent = True
    bpy.context.scene.render.resolution_x = 512
    bpy.context.scene.render.resolution_y = 512
    bpy.context.scene.render.image_settings.file_format = 'PNG'
    bpy.context.scene.render.image_settings.color_mode = 'BW'
    bpy.context.scene.render.image_settings.color_depth = '16'
    bpy.context.scene.render.filepath = output_path
    setup_nodes(output_path)
    bpy.ops.render.render(write_still=True)
    for channel_name in ['r', 'g', 'b', 'a', 'depth']:
        sub_dir = f'{output_path}_{channel_name}'
        image_path = os.path.join(sub_dir, os.listdir(sub_dir)[0])
        name, ext = os.path.splitext(output_path)
        if channel_name == 'depth' or not use_workbench:
            os.rename(image_path, f'{name}_{channel_name}{ext}')
        else:
            os.remove(image_path)
        os.removedirs(sub_dir)
    if use_workbench:
        bpy.context.scene.use_nodes = False
        bpy.context.scene.render.engine = 'BLENDER_WORKBENCH'
        bpy.context.scene.render.image_settings.color_mode = 'RGBA'
        bpy.context.scene.render.image_settings.color_depth = '8'
        bpy.context.scene.display.shading.color_type = 'TEXTURE'
        bpy.context.scene.display.shading.light = 'FLAT'
        if fast_mode:
            bpy.context.scene.display.render_aa = 'FXAA'
        os.remove(output_path)
        bpy.ops.render.render(write_still=True)
        bpy.context.scene.render.image_settings.color_mode = 'BW'
        bpy.context.scene.render.image_settings.color_depth = '16'
",point_e\evals\scripts\blender_script.py
scene_fov,,"def scene_fov():
    x_fov = bpy.context.scene.camera.data.angle_x
    y_fov = bpy.context.scene.camera.data.angle_y
    width = bpy.context.scene.render.resolution_x
    height = bpy.context.scene.render.resolution_y
    if bpy.context.scene.camera.data.angle == x_fov:
        y_fov = 2 * math.atan(math.tan(x_fov / 2) * height / width)
    else:
        x_fov = 2 * math.atan(math.tan(y_fov / 2) * width / height)
    return x_fov, y_fov
",point_e\evals\scripts\blender_script.py
write_camera_metadata,,"def write_camera_metadata(path):
    x_fov, y_fov = scene_fov()
    bbox_min, bbox_max = scene_bbox()
    matrix = bpy.context.scene.camera.matrix_world
    with open(path, 'w') as f:
        json.dump(dict(format_version=FORMAT_VERSION, max_depth=MAX_DEPTH,
            bbox=[list(bbox_min), list(bbox_max)], origin=list(matrix.col[3
            ])[:3], x_fov=x_fov, y_fov=y_fov, x=list(matrix.col[0])[:3], y=
            list(-matrix.col[1])[:3], z=list(-matrix.col[2])[:3]), f)
",point_e\evals\scripts\blender_script.py
save_rendering_dataset,,"def save_rendering_dataset(input_path: str, output_path: str, num_images:
    int, backend: str, light_mode: str, camera_pose: str, camera_dist_min:
    float, camera_dist_max: float, fast_mode: bool):
    assert light_mode in ['random', 'uniform', 'camera']
    assert camera_pose in ['random', 'z-circular', 'z-circular-elevated']
    import_model(input_path)
    bpy.context.scene.render.engine = backend
    normalize_scene()
    if light_mode == 'random':
        create_random_lights()
    elif light_mode == 'uniform':
        create_uniform_light(backend)
    create_camera()
    create_vertex_color_shaders()
    for i in range(num_images):
        t = i / max(num_images - 1, 1)
        place_camera(t, camera_pose_mode=camera_pose, camera_dist_min=
            camera_dist_min, camera_dist_max=camera_dist_max)
        if light_mode == 'camera':
            create_camera_light()
        render_scene(os.path.join(output_path, f'{i:05}.png'), fast_mode=
            fast_mode)
        write_camera_metadata(os.path.join(output_path, f'{i:05}.json'))
    with open(os.path.join(output_path, 'info.json'), 'w') as f:
        info = dict(backend=backend, light_mode=light_mode, fast_mode=
            fast_mode, format_version=FORMAT_VERSION, channels=['R', 'G',
            'B', 'A', 'D'], scale=0.5)
        json.dump(info, f)
",point_e\evals\scripts\blender_script.py
main,,"def main():
    try:
        dash_index = sys.argv.index('--')
    except ValueError as exc:
        raise ValueError(""arguments must be preceded by '--'"") from exc
    raw_args = sys.argv[dash_index + 1:]
    parser = argparse.ArgumentParser()
    parser.add_argument('--input_path', required=True, type=str)
    parser.add_argument('--output_path', required=True, type=str)
    parser.add_argument('--num_images', type=int, default=20)
    parser.add_argument('--backend', type=str, default='BLENDER_EEVEE')
    parser.add_argument('--light_mode', type=str, default='uniform')
    parser.add_argument('--camera_pose', type=str, default='random')
    parser.add_argument('--camera_dist_min', type=float, default=2.0)
    parser.add_argument('--camera_dist_max', type=float, default=2.0)
    parser.add_argument('--fast_mode', action='store_true')
    args = parser.parse_args(raw_args)
    save_rendering_dataset(input_path=args.input_path, output_path=args.
        output_path, num_images=args.num_images, backend=args.backend,
        light_mode=args.light_mode, camera_pose=args.camera_pose,
        camera_dist_min=args.camera_dist_min, camera_dist_max=args.
        camera_dist_max, fast_mode=args.fast_mode)
",point_e\evals\scripts\blender_script.py
main,,"def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--cache_dir', type=str, default=None)
    parser.add_argument('batch_1', type=str)
    parser.add_argument('batch_2', type=str)
    args = parser.parse_args()
    print('creating classifier...')
    clf = PointNetClassifier(devices=get_torch_devices(), cache_dir=args.
        cache_dir)
    print('computing first batch activations')
    features_1, _ = clf.features_and_preds(NpzStreamer(args.batch_1))
    stats_1 = compute_statistics(features_1)
    del features_1
    features_2, _ = clf.features_and_preds(NpzStreamer(args.batch_2))
    stats_2 = compute_statistics(features_2)
    del features_2
    print(f'P-FID: {stats_1.frechet_distance(stats_2)}')
",point_e\evals\scripts\evaluate_pfid.py
main,,"def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--cache_dir', type=str, default=None)
    parser.add_argument('batch', type=str)
    args = parser.parse_args()
    print('creating classifier...')
    clf = PointNetClassifier(devices=get_torch_devices(), cache_dir=args.
        cache_dir)
    print('computing batch predictions')
    _, preds = clf.features_and_preds(NpzStreamer(args.batch))
    print(f'P-IS: {compute_inception_score(preds)}')
",point_e\evals\scripts\evaluate_pis.py
checkpoint,"Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
               explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.","def checkpoint(func: Callable[..., Union[torch.Tensor, Sequence[torch.
    Tensor]]], inputs: Sequence[torch.Tensor], params: Iterable[torch.
    Tensor], flag: bool):
    """"""""""""
    if flag:
        args = tuple(inputs) + tuple(params)
        return CheckpointFunction.apply(func, len(inputs), *args)
    else:
        return func(*inputs)
",point_e\models\checkpoint.py
forward,,"@staticmethod
def forward(ctx, run_function, length, *args):
    ctx.run_function = run_function
    ctx.input_tensors = list(args[:length])
    ctx.input_params = list(args[length:])
    with torch.no_grad():
        output_tensors = ctx.run_function(*ctx.input_tensors)
    return output_tensors
",point_e\models\checkpoint.py
backward,,"@staticmethod
def backward(ctx, *output_grads):
    ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.
        input_tensors]
    with torch.enable_grad():
        shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
        output_tensors = ctx.run_function(*shallow_copies)
    input_grads = torch.autograd.grad(output_tensors, ctx.input_tensors +
        ctx.input_params, output_grads, allow_unused=True)
    del ctx.input_tensors
    del ctx.input_params
    del output_tensors
    return (None, None) + input_grads
",point_e\models\checkpoint.py
model_from_config,,"def model_from_config(config: Dict[str, Any], device: torch.device
    ) ->nn.Module:
    config = config.copy()
    name = config.pop('name')
    if name == 'PointDiffusionTransformer':
        return PointDiffusionTransformer(device=device, dtype=torch.float32,
            **config)
    elif name == 'CLIPImagePointDiffusionTransformer':
        return CLIPImagePointDiffusionTransformer(device=device, dtype=
            torch.float32, **config)
    elif name == 'CLIPImageGridPointDiffusionTransformer':
        return CLIPImageGridPointDiffusionTransformer(device=device, dtype=
            torch.float32, **config)
    elif name == 'UpsamplePointDiffusionTransformer':
        return UpsamplePointDiffusionTransformer(device=device, dtype=torch
            .float32, **config)
    elif name == 'CLIPImageGridUpsamplePointDiffusionTransformer':
        return CLIPImageGridUpsamplePointDiffusionTransformer(device=device,
            dtype=torch.float32, **config)
    elif name == 'CrossAttentionPointCloudSDFModel':
        return CrossAttentionPointCloudSDFModel(device=device, dtype=torch.
            float32, **config)
    raise ValueError(f'unknown model name: {name}')
",point_e\models\configs.py
default_cache_dir,,"@lru_cache()
def default_cache_dir() ->str:
    return os.path.join(os.path.abspath(os.getcwd()), 'point_e_model_cache')
",point_e\models\download.py
fetch_file_cached,"Download the file at the given URL into a local file and return the path.
If cache_dir is specified, it will be used to download the files.
Otherwise, default_cache_dir() is used.","def fetch_file_cached(url: str, progress: bool=True, cache_dir: Optional[
    str]=None, chunk_size: int=4096) ->str:
    """"""""""""
    if cache_dir is None:
        cache_dir = default_cache_dir()
    os.makedirs(cache_dir, exist_ok=True)
    local_path = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(local_path):
        return local_path
    response = requests.get(url, stream=True)
    size = int(response.headers.get('content-length', '0'))
    with FileLock(local_path + '.lock'):
        if progress:
            pbar = tqdm(total=size, unit='iB', unit_scale=True)
        tmp_path = local_path + '.tmp'
        with open(tmp_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size):
                if progress:
                    pbar.update(len(chunk))
                f.write(chunk)
        os.rename(tmp_path, local_path)
        if progress:
            pbar.close()
        return local_path
",point_e\models\download.py
load_checkpoint,,"def load_checkpoint(checkpoint_name: str, device: torch.device, progress:
    bool=True, cache_dir: Optional[str]=None, chunk_size: int=4096) ->Dict[
    str, torch.Tensor]:
    if checkpoint_name not in MODEL_PATHS:
        raise ValueError(
            f'Unknown checkpoint name {checkpoint_name}. Known names are: {MODEL_PATHS.keys()}.'
            )
    path = fetch_file_cached(MODEL_PATHS[checkpoint_name], progress=
        progress, cache_dir=cache_dir, chunk_size=chunk_size)
    return torch.load(path, map_location=device)
",point_e\models\download.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_data: int,
    width: int, heads: int, init_scale: float, data_width: Optional[int]=None):
    super().__init__()
    self.n_data = n_data
    self.width = width
    self.heads = heads
    self.data_width = width if data_width is None else data_width
    self.c_q = nn.Linear(width, width, device=device, dtype=dtype)
    self.c_kv = nn.Linear(self.data_width, width * 2, device=device, dtype=
        dtype)
    self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
    self.attention = QKVMultiheadCrossAttention(device=device, dtype=dtype,
        heads=heads, n_data=n_data)
    init_linear(self.c_q, init_scale)
    init_linear(self.c_kv, init_scale)
    init_linear(self.c_proj, init_scale)
",point_e\models\perceiver.py
forward,,"def forward(self, x, data):
    x = self.c_q(x)
    data = self.c_kv(data)
    x = checkpoint(self.attention, (x, data), (), True)
    x = self.c_proj(x)
    return x
",point_e\models\perceiver.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
    n_data: int):
    super().__init__()
    self.device = device
    self.dtype = dtype
    self.heads = heads
    self.n_data = n_data
",point_e\models\perceiver.py
forward,,"def forward(self, q, kv):
    _, n_ctx, _ = q.shape
    bs, n_data, width = kv.shape
    attn_ch = width // self.heads // 2
    scale = 1 / math.sqrt(math.sqrt(attn_ch))
    q = q.view(bs, n_ctx, self.heads, -1)
    kv = kv.view(bs, n_data, self.heads, -1)
    k, v = torch.split(kv, attn_ch, dim=-1)
    weight = torch.einsum('bthc,bshc->bhts', q * scale, k * scale)
    wdtype = weight.dtype
    weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
    return torch.einsum('bhts,bshc->bthc', weight, v).reshape(bs, n_ctx, -1)
",point_e\models\perceiver.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_data: int,
    width: int, heads: int, data_width: Optional[int]=None, init_scale:
    float=1.0):
    super().__init__()
    if data_width is None:
        data_width = width
    self.attn = MultiheadCrossAttention(device=device, dtype=dtype, n_data=
        n_data, width=width, heads=heads, data_width=data_width, init_scale
        =init_scale)
    self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
    self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
    self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=
        init_scale)
    self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
",point_e\models\perceiver.py
forward,,"def forward(self, x: torch.Tensor, data: torch.Tensor):
    x = x + self.attn(self.ln_1(x), self.ln_2(data))
    x = x + self.mlp(self.ln_3(x))
    return x
",point_e\models\perceiver.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_data: int,
    width: int, layers: int, heads: int, init_scale: float=0.25, data_width:
    Optional[int]=None):
    super().__init__()
    self.width = width
    self.layers = layers
    init_scale = init_scale * math.sqrt(1.0 / width)
    self.resblocks = nn.ModuleList([ResidualCrossAttentionBlock(device=
        device, dtype=dtype, n_data=n_data, width=width, heads=heads,
        init_scale=init_scale, data_width=data_width) for _ in range(layers)])
",point_e\models\perceiver.py
forward,,"def forward(self, x: torch.Tensor, data: torch.Tensor):
    for block in self.resblocks:
        x = block(x, data)
    return x
",point_e\models\perceiver.py
_image_to_pil,,"def _image_to_pil(obj: Optional[ImageType]) ->Image.Image:
    if obj is None:
        return Image.fromarray(np.zeros([64, 64, 3], dtype=np.uint8))
    if isinstance(obj, np.ndarray):
        return Image.fromarray(obj.astype(np.uint8))
    elif isinstance(obj, torch.Tensor):
        return Image.fromarray(obj.detach().cpu().numpy().astype(np.uint8))
    else:
        return obj
",point_e\models\pretrained_clip.py
__init__,,"def __init__(self, device: torch.device, dtype: Optional[torch.dtype]=torch
    .float32, ensure_used_params: bool=True, clip_name: str='ViT-L/14',
    cache_dir: Optional[str]=None):
    super().__init__()
    assert clip_name in ['ViT-L/14', 'ViT-B/32']
    self.device = device
    self.ensure_used_params = ensure_used_params
    import clip
    self.clip_model, self.preprocess = clip.load(clip_name, device=device,
        download_root=cache_dir or default_cache_dir())
    self.clip_name = clip_name
    if dtype is not None:
        self.clip_model.to(dtype)
    self._tokenize = clip.tokenize
",point_e\models\pretrained_clip.py
feature_dim,,"@property
def feature_dim(self) ->int:
    if self.clip_name == 'ViT-L/14':
        return 768
    else:
        return 512
",point_e\models\pretrained_clip.py
grid_size,,"@property
def grid_size(self) ->int:
    if self.clip_name == 'ViT-L/14':
        return 16
    else:
        return 7
",point_e\models\pretrained_clip.py
grid_feature_dim,,"@property
def grid_feature_dim(self) ->int:
    if self.clip_name == 'ViT-L/14':
        return 1024
    else:
        return 768
",point_e\models\pretrained_clip.py
forward,"Generate a batch of embeddings from a mixture of images, texts,
precomputed embeddings, and possibly empty values.

For each batch element, at most one of images, texts, and embeddings
should have a non-None value. Embeddings from multiple modalities
cannot be mixed for a single batch element. If no modality is provided,
a zero embedding will be used for the batch element.","def forward(self, batch_size: int, images: Optional[Iterable[Optional[
    ImageType]]]=None, texts: Optional[Iterable[Optional[str]]]=None,
    embeddings: Optional[Iterable[Optional[torch.Tensor]]]=None
    ) ->torch.Tensor:
    """"""""""""
    image_seq = [None] * batch_size if images is None else list(images)
    text_seq = [None] * batch_size if texts is None else list(texts)
    embedding_seq = [None] * batch_size if embeddings is None else list(
        embeddings)
    assert len(image_seq
        ) == batch_size, 'number of images should match batch size'
    assert len(text_seq
        ) == batch_size, 'number of texts should match batch size'
    assert len(embedding_seq
        ) == batch_size, 'number of embeddings should match batch size'
    if self.ensure_used_params:
        return self._static_multimodal_embed(images=image_seq, texts=
            text_seq, embeddings=embedding_seq)
    result = torch.zeros((batch_size, self.feature_dim), device=self.device)
    index_images = []
    index_texts = []
    for i, (image, text, emb) in enumerate(zip(image_seq, text_seq,
        embedding_seq)):
        assert sum([int(image is not None), int(text is not None), int(emb
             is not None)]
            ) < 2, 'only one modality may be non-None per batch element'
        if image is not None:
            index_images.append((i, image))
        elif text is not None:
            index_texts.append((i, text))
        elif emb is not None:
            result[i] = emb.to(result)
    if len(index_images):
        embs = self.embed_images(img for _, img in index_images)
        for (i, _), emb in zip(index_images, embs):
            result[i] = emb.to(result)
    if len(index_texts):
        embs = self.embed_text(text for _, text in index_texts)
        for (i, _), emb in zip(index_texts, embs):
            result[i] = emb.to(result)
    return result
",point_e\models\pretrained_clip.py
_static_multimodal_embed,"Like forward(), but always runs all encoders to ensure that
the forward graph looks the same on every rank.","def _static_multimodal_embed(self, images: List[Optional[ImageType]]=None,
    texts: List[Optional[str]]=None, embeddings: List[Optional[torch.Tensor
    ]]=None) ->torch.Tensor:
    """"""""""""
    image_emb = self.embed_images(images)
    text_emb = self.embed_text(t if t else '' for t in texts)
    joined_embs = torch.stack([(emb.to(device=self.device, dtype=torch.
        float32) if emb is not None else torch.zeros(self.feature_dim,
        device=self.device)) for emb in embeddings], dim=0)
    image_flag = torch.tensor([(x is not None) for x in images], device=
        self.device)[:, None].expand_as(image_emb)
    text_flag = torch.tensor([(x is not None) for x in texts], device=self.
        device)[:, None].expand_as(image_emb)
    emb_flag = torch.tensor([(x is not None) for x in embeddings], device=
        self.device)[:, None].expand_as(image_emb)
    return image_flag.float() * image_emb + text_flag.float(
        ) * text_emb + emb_flag.float(
        ) * joined_embs + self.clip_model.logit_scale * 0
",point_e\models\pretrained_clip.py
embed_images,":param xs: N images, stored as numpy arrays, tensors, or PIL images.
:return: an [N x D] tensor of features.","def embed_images(self, xs: Iterable[Optional[ImageType]]) ->torch.Tensor:
    """"""""""""
    clip_inputs = self.images_to_tensor(xs)
    results = self.clip_model.encode_image(clip_inputs).float()
    return results / torch.linalg.norm(results, dim=-1, keepdim=True)
",point_e\models\pretrained_clip.py
embed_text,Embed text prompts as an [N x D] tensor.,"def embed_text(self, prompts: Iterable[str]) ->torch.Tensor:
    """"""""""""
    enc = self.clip_model.encode_text(self._tokenize(list(prompts),
        truncate=True).to(self.device)).float()
    return enc / torch.linalg.norm(enc, dim=-1, keepdim=True)
",point_e\models\pretrained_clip.py
embed_images_grid,"Embed images into latent grids.

:param xs: an iterable of images to embed.
:return: a tensor of shape [N x C x L], where L = self.grid_size**2.","def embed_images_grid(self, xs: Iterable[Optional[ImageType]]) ->torch.Tensor:
    """"""""""""
    if self.ensure_used_params:
        extra_value = 0.0
        for p in self.parameters():
            extra_value = extra_value + p.mean() * 0.0
    else:
        extra_value = 0.0
    x = self.images_to_tensor(xs).to(self.clip_model.dtype)
    vt = self.clip_model.visual
    x = vt.conv1(x)
    x = x.reshape(x.shape[0], x.shape[1], -1)
    x = x.permute(0, 2, 1)
    x = torch.cat([vt.class_embedding.to(x.dtype) + torch.zeros(x.shape[0],
        1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)
    x = x + vt.positional_embedding.to(x.dtype)
    x = vt.ln_pre(x)
    x = x.permute(1, 0, 2)
    x = vt.transformer(x)
    x = x.permute(1, 2, 0)
    return x[..., 1:].contiguous().float() + extra_value
",point_e\models\pretrained_clip.py
images_to_tensor,,"def images_to_tensor(self, xs: Iterable[Optional[ImageType]]) ->torch.Tensor:
    return torch.stack([self.preprocess(_image_to_pil(x)) for x in xs], dim=0
        ).to(self.device)
",point_e\models\pretrained_clip.py
__init__,,"def __init__(self, device: torch.device, **kwargs):
    self.model = ImageCLIP(device, dtype=None, ensure_used_params=False, **
        kwargs)
    for parameter in self.model.parameters():
        parameter.requires_grad_(False)
",point_e\models\pretrained_clip.py
feature_dim,,"@property
def feature_dim(self) ->int:
    return self.model.feature_dim
",point_e\models\pretrained_clip.py
grid_size,,"@property
def grid_size(self) ->int:
    return self.model.grid_size
",point_e\models\pretrained_clip.py
grid_feature_dim,,"@property
def grid_feature_dim(self) ->int:
    return self.model.grid_feature_dim
",point_e\models\pretrained_clip.py
__call__,,"def __call__(self, batch_size: int, images: Optional[Iterable[Optional[
    ImageType]]]=None, texts: Optional[Iterable[Optional[str]]]=None,
    embeddings: Optional[Iterable[Optional[torch.Tensor]]]=None
    ) ->torch.Tensor:
    return self.model(batch_size=batch_size, images=images, texts=texts,
        embeddings=embeddings)
",point_e\models\pretrained_clip.py
embed_images,,"def embed_images(self, xs: Iterable[Optional[ImageType]]) ->torch.Tensor:
    with torch.no_grad():
        return self.model.embed_images(xs)
",point_e\models\pretrained_clip.py
embed_text,,"def embed_text(self, prompts: Iterable[str]) ->torch.Tensor:
    with torch.no_grad():
        return self.model.embed_text(prompts)
",point_e\models\pretrained_clip.py
embed_images_grid,,"def embed_images_grid(self, xs: Iterable[Optional[ImageType]]) ->torch.Tensor:
    with torch.no_grad():
        return self.model.embed_images_grid(xs)
",point_e\models\pretrained_clip.py
device,Get the device that should be used for input tensors.,"@property
@abstractmethod
def device(self) ->torch.device:
    """"""""""""
",point_e\models\sdf.py
default_batch_size,"Get a reasonable default number of query points for the model.
In some cases, this might be the only supported size.","@property
@abstractmethod
def default_batch_size(self) ->int:
    """"""""""""
",point_e\models\sdf.py
encode_point_clouds,"Encode a batch of point clouds to cache part of the SDF calculation
done by forward().

:param point_clouds: a batch of [batch x 3 x N] points.
:return: a state representing the encoded point cloud batch.","@abstractmethod
def encode_point_clouds(self, point_clouds: torch.Tensor) ->Dict[str, torch
    .Tensor]:
    """"""""""""
",point_e\models\sdf.py
forward,"Predict the SDF at the coordinates x, given a batch of point clouds.

Either point_clouds or encoded should be passed. Only exactly one of
these arguments should be None.

:param x: a [batch x 3 x N'] tensor of query points.
:param point_clouds: a [batch x 3 x N] batch of point clouds.
:param encoded: the result of calling encode_point_clouds().
:return: a [batch x N'] tensor of SDF predictions.","def forward(self, x: torch.Tensor, point_clouds: Optional[torch.Tensor]=
    None, encoded: Optional[Dict[str, torch.Tensor]]=None) ->torch.Tensor:
    """"""""""""
    assert point_clouds is not None or encoded is not None
    assert point_clouds is None or encoded is None
    if point_clouds is not None:
        encoded = self.encode_point_clouds(point_clouds)
    return self.predict_sdf(x, encoded)
",point_e\models\sdf.py
predict_sdf,"Predict the SDF at the query points given the encoded point clouds.

Each query point should be treated independently, only conditioning on
the point clouds themselves.","@abstractmethod
def predict_sdf(self, x: torch.Tensor, encoded: Optional[Dict[str, torch.
    Tensor]]) ->torch.Tensor:
    """"""""""""
",point_e\models\sdf.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_ctx: int=
    4096, width: int=512, encoder_layers: int=12, encoder_heads: int=8,
    decoder_layers: int=4, decoder_heads: int=8, init_scale: float=0.25):
    super().__init__()
    self._device = device
    self.n_ctx = n_ctx
    self.encoder_input_proj = nn.Linear(3, width, device=device, dtype=dtype)
    self.encoder = Transformer(device=device, dtype=dtype, n_ctx=n_ctx,
        width=width, layers=encoder_layers, heads=encoder_heads, init_scale
        =init_scale)
    self.decoder_input_proj = nn.Linear(3, width, device=device, dtype=dtype)
    self.decoder = SimplePerceiver(device=device, dtype=dtype, n_data=n_ctx,
        width=width, layers=decoder_layers, heads=decoder_heads, init_scale
        =init_scale)
    self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
    self.output_proj = nn.Linear(width, 1, device=device, dtype=dtype)
",point_e\models\sdf.py
device,,"@property
def device(self) ->torch.device:
    return self._device
",point_e\models\sdf.py
default_batch_size,,"@property
def default_batch_size(self) ->int:
    return self.n_query
",point_e\models\sdf.py
encode_point_clouds,,"def encode_point_clouds(self, point_clouds: torch.Tensor) ->Dict[str, torch
    .Tensor]:
    h = self.encoder_input_proj(point_clouds.permute(0, 2, 1))
    h = self.encoder(h)
    return dict(latents=h)
",point_e\models\sdf.py
predict_sdf,,"def predict_sdf(self, x: torch.Tensor, encoded: Optional[Dict[str, torch.
    Tensor]]) ->torch.Tensor:
    data = encoded['latents']
    x = self.decoder_input_proj(x.permute(0, 2, 1))
    x = self.decoder(x, data)
    x = self.ln_post(x)
    x = self.output_proj(x)
    return x[..., 0]
",point_e\models\sdf.py
init_linear,,"def init_linear(l, stddev):
    nn.init.normal_(l.weight, std=stddev)
    if l.bias is not None:
        nn.init.constant_(l.bias, 0.0)
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_ctx: int,
    width: int, heads: int, init_scale: float):
    super().__init__()
    self.n_ctx = n_ctx
    self.width = width
    self.heads = heads
    self.c_qkv = nn.Linear(width, width * 3, device=device, dtype=dtype)
    self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
    self.attention = QKVMultiheadAttention(device=device, dtype=dtype,
        heads=heads, n_ctx=n_ctx)
    init_linear(self.c_qkv, init_scale)
    init_linear(self.c_proj, init_scale)
",point_e\models\transformer.py
forward,,"def forward(self, x):
    x = self.c_qkv(x)
    x = checkpoint(self.attention, (x,), (), True)
    x = self.c_proj(x)
    return x
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, width: int,
    init_scale: float):
    super().__init__()
    self.width = width
    self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
    self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
    self.gelu = nn.GELU()
    init_linear(self.c_fc, init_scale)
    init_linear(self.c_proj, init_scale)
",point_e\models\transformer.py
forward,,"def forward(self, x):
    return self.c_proj(self.gelu(self.c_fc(x)))
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
    n_ctx: int):
    super().__init__()
    self.device = device
    self.dtype = dtype
    self.heads = heads
    self.n_ctx = n_ctx
",point_e\models\transformer.py
forward,,"def forward(self, qkv):
    bs, n_ctx, width = qkv.shape
    attn_ch = width // self.heads // 3
    scale = 1 / math.sqrt(math.sqrt(attn_ch))
    qkv = qkv.view(bs, n_ctx, self.heads, -1)
    q, k, v = torch.split(qkv, attn_ch, dim=-1)
    weight = torch.einsum('bthc,bshc->bhts', q * scale, k * scale)
    wdtype = weight.dtype
    weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
    return torch.einsum('bhts,bshc->bthc', weight, v).reshape(bs, n_ctx, -1)
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_ctx: int,
    width: int, heads: int, init_scale: float=1.0):
    super().__init__()
    self.attn = MultiheadAttention(device=device, dtype=dtype, n_ctx=n_ctx,
        width=width, heads=heads, init_scale=init_scale)
    self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
    self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=
        init_scale)
    self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
",point_e\models\transformer.py
forward,,"def forward(self, x: torch.Tensor):
    x = x + self.attn(self.ln_1(x))
    x = x + self.mlp(self.ln_2(x))
    return x
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_ctx: int,
    width: int, layers: int, heads: int, init_scale: float=0.25):
    super().__init__()
    self.n_ctx = n_ctx
    self.width = width
    self.layers = layers
    init_scale = init_scale * math.sqrt(1.0 / width)
    self.resblocks = nn.ModuleList([ResidualAttentionBlock(device=device,
        dtype=dtype, n_ctx=n_ctx, width=width, heads=heads, init_scale=
        init_scale) for _ in range(layers)])
",point_e\models\transformer.py
forward,,"def forward(self, x: torch.Tensor):
    for block in self.resblocks:
        x = block(x)
    return x
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype,
    input_channels: int=3, output_channels: int=3, n_ctx: int=1024, width:
    int=512, layers: int=12, heads: int=8, init_scale: float=0.25,
    time_token_cond: bool=False):
    super().__init__()
    self.input_channels = input_channels
    self.output_channels = output_channels
    self.n_ctx = n_ctx
    self.time_token_cond = time_token_cond
    self.time_embed = MLP(device=device, dtype=dtype, width=width,
        init_scale=init_scale * math.sqrt(1.0 / width))
    self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
    self.backbone = Transformer(device=device, dtype=dtype, n_ctx=n_ctx +
        int(time_token_cond), width=width, layers=layers, heads=heads,
        init_scale=init_scale)
    self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
    self.input_proj = nn.Linear(input_channels, width, device=device, dtype
        =dtype)
    self.output_proj = nn.Linear(width, output_channels, device=device,
        dtype=dtype)
    with torch.no_grad():
        self.output_proj.weight.zero_()
        self.output_proj.bias.zero_()
",point_e\models\transformer.py
forward,":param x: an [N x C x T] tensor.
:param t: an [N] tensor.
:return: an [N x C' x T] tensor.","def forward(self, x: torch.Tensor, t: torch.Tensor):
    """"""""""""
    assert x.shape[-1] == self.n_ctx
    t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
    return self._forward_with_cond(x, [(t_embed, self.time_token_cond)])
",point_e\models\transformer.py
_forward_with_cond,,"def _forward_with_cond(self, x: torch.Tensor, cond_as_token: List[Tuple[
    torch.Tensor, bool]]) ->torch.Tensor:
    h = self.input_proj(x.permute(0, 2, 1))
    for emb, as_token in cond_as_token:
        if not as_token:
            h = h + emb[:, None]
    extra_tokens = [(emb[:, None] if len(emb.shape) == 2 else emb) for emb,
        as_token in cond_as_token if as_token]
    if len(extra_tokens):
        h = torch.cat(extra_tokens + [h], dim=1)
    h = self.ln_pre(h)
    h = self.backbone(h)
    h = self.ln_post(h)
    if len(extra_tokens):
        h = h[:, sum(h.shape[1] for h in extra_tokens):]
    h = self.output_proj(h)
    return h.permute(0, 2, 1)
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_ctx: int=
    1024, token_cond: bool=False, cond_drop_prob: float=0.0, frozen_clip:
    bool=True, cache_dir: Optional[str]=None, **kwargs):
    super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + int(
        token_cond), **kwargs)
    self.n_ctx = n_ctx
    self.token_cond = token_cond
    self.clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device,
        cache_dir=cache_dir)
    self.clip_embed = nn.Linear(self.clip.feature_dim, self.backbone.width,
        device=device, dtype=dtype)
    self.cond_drop_prob = cond_drop_prob
",point_e\models\transformer.py
cached_model_kwargs,,"def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]
    ) ->Dict[str, Any]:
    with torch.no_grad():
        return dict(embeddings=self.clip(batch_size, **model_kwargs))
",point_e\models\transformer.py
forward,":param x: an [N x C x T] tensor.
:param t: an [N] tensor.
:param images: a batch of images to condition on.
:param texts: a batch of texts to condition on.
:param embeddings: a batch of CLIP embeddings to condition on.
:return: an [N x C' x T] tensor.","def forward(self, x: torch.Tensor, t: torch.Tensor, images: Optional[
    Iterable[Optional[ImageType]]]=None, texts: Optional[Iterable[Optional[
    str]]]=None, embeddings: Optional[Iterable[Optional[torch.Tensor]]]=None):
    """"""""""""
    assert x.shape[-1] == self.n_ctx
    t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
    clip_out = self.clip(batch_size=len(x), images=images, texts=texts,
        embeddings=embeddings)
    assert len(clip_out.shape) == 2 and clip_out.shape[0] == x.shape[0]
    if self.training:
        mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
        clip_out = clip_out * mask[:, None].to(clip_out)
    clip_out = math.sqrt(clip_out.shape[1]) * clip_out
    clip_embed = self.clip_embed(clip_out)
    cond = [(clip_embed, self.token_cond), (t_embed, self.time_token_cond)]
    return self._forward_with_cond(x, cond)
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_ctx: int=
    1024, cond_drop_prob: float=0.0, frozen_clip: bool=True, cache_dir:
    Optional[str]=None, **kwargs):
    clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device,
        cache_dir=cache_dir)
    super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + clip.
        grid_size ** 2, **kwargs)
    self.n_ctx = n_ctx
    self.clip = clip
    self.clip_embed = nn.Sequential(nn.LayerNorm(normalized_shape=(self.
        clip.grid_feature_dim,), device=device, dtype=dtype), nn.Linear(
        self.clip.grid_feature_dim, self.backbone.width, device=device,
        dtype=dtype))
    self.cond_drop_prob = cond_drop_prob
",point_e\models\transformer.py
cached_model_kwargs,,"def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]
    ) ->Dict[str, Any]:
    _ = batch_size
    with torch.no_grad():
        return dict(embeddings=self.clip.embed_images_grid(model_kwargs[
            'images']))
",point_e\models\transformer.py
forward,":param x: an [N x C x T] tensor.
:param t: an [N] tensor.
:param images: a batch of images to condition on.
:param embeddings: a batch of CLIP latent grids to condition on.
:return: an [N x C' x T] tensor.","def forward(self, x: torch.Tensor, t: torch.Tensor, images: Optional[
    Iterable[ImageType]]=None, embeddings: Optional[Iterable[torch.Tensor]]
    =None):
    """"""""""""
    assert images is not None or embeddings is not None, 'must specify images or embeddings'
    assert images is None or embeddings is None, 'cannot specify both images and embeddings'
    assert x.shape[-1] == self.n_ctx
    t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
    if images is not None:
        clip_out = self.clip.embed_images_grid(images)
    else:
        clip_out = embeddings
    if self.training:
        mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
        clip_out = clip_out * mask[:, None, None].to(clip_out)
    clip_out = clip_out.permute(0, 2, 1)
    clip_embed = self.clip_embed(clip_out)
    cond = [(t_embed, self.time_token_cond), (clip_embed, True)]
    return self._forward_with_cond(x, cond)
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype,
    cond_input_channels: Optional[int]=None, cond_ctx: int=1024, n_ctx: int
    =4096 - 1024, channel_scales: Optional[Sequence[float]]=None,
    channel_biases: Optional[Sequence[float]]=None, **kwargs):
    super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + cond_ctx, **
        kwargs)
    self.n_ctx = n_ctx
    self.cond_input_channels = cond_input_channels or self.input_channels
    self.cond_point_proj = nn.Linear(self.cond_input_channels, self.
        backbone.width, device=device, dtype=dtype)
    self.register_buffer('channel_scales', torch.tensor(channel_scales,
        dtype=dtype, device=device) if channel_scales is not None else None)
    self.register_buffer('channel_biases', torch.tensor(channel_biases,
        dtype=dtype, device=device) if channel_biases is not None else None)
",point_e\models\transformer.py
forward,":param x: an [N x C1 x T] tensor.
:param t: an [N] tensor.
:param low_res: an [N x C2 x T'] tensor of conditioning points.
:return: an [N x C3 x T] tensor.","def forward(self, x: torch.Tensor, t: torch.Tensor, *, low_res: torch.Tensor):
    """"""""""""
    assert x.shape[-1] == self.n_ctx
    t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
    low_res_embed = self._embed_low_res(low_res)
    cond = [(t_embed, self.time_token_cond), (low_res_embed, True)]
    return self._forward_with_cond(x, cond)
",point_e\models\transformer.py
_embed_low_res,,"def _embed_low_res(self, x: torch.Tensor) ->torch.Tensor:
    if self.channel_scales is not None:
        x = x * self.channel_scales[None, :, None]
    if self.channel_biases is not None:
        x = x + self.channel_biases[None, :, None]
    return self.cond_point_proj(x.permute(0, 2, 1))
",point_e\models\transformer.py
__init__,,"def __init__(self, *, device: torch.device, dtype: torch.dtype, n_ctx: int=
    4096 - 1024, cond_drop_prob: float=0.0, frozen_clip: bool=True,
    cache_dir: Optional[str]=None, **kwargs):
    clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device,
        cache_dir=cache_dir)
    super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + clip.
        grid_size ** 2, **kwargs)
    self.n_ctx = n_ctx
    self.clip = clip
    self.clip_embed = nn.Sequential(nn.LayerNorm(normalized_shape=(self.
        clip.grid_feature_dim,), device=device, dtype=dtype), nn.Linear(
        self.clip.grid_feature_dim, self.backbone.width, device=device,
        dtype=dtype))
    self.cond_drop_prob = cond_drop_prob
",point_e\models\transformer.py
cached_model_kwargs,,"def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]
    ) ->Dict[str, Any]:
    if 'images' not in model_kwargs:
        zero_emb = torch.zeros([batch_size, self.clip.grid_feature_dim, 
            self.clip.grid_size ** 2], device=next(self.parameters()).device)
        return dict(embeddings=zero_emb, low_res=model_kwargs['low_res'])
    with torch.no_grad():
        return dict(embeddings=self.clip.embed_images_grid(model_kwargs[
            'images']), low_res=model_kwargs['low_res'])
",point_e\models\transformer.py
forward,":param x: an [N x C1 x T] tensor.
:param t: an [N] tensor.
:param low_res: an [N x C2 x T'] tensor of conditioning points.
:param images: a batch of images to condition on.
:param embeddings: a batch of CLIP latent grids to condition on.
:return: an [N x C3 x T] tensor.","def forward(self, x: torch.Tensor, t: torch.Tensor, *, low_res: torch.
    Tensor, images: Optional[Iterable[ImageType]]=None, embeddings:
    Optional[Iterable[torch.Tensor]]=None):
    """"""""""""
    assert x.shape[-1] == self.n_ctx
    t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
    low_res_embed = self._embed_low_res(low_res)
    if images is not None:
        clip_out = self.clip.embed_images_grid(images)
    elif embeddings is not None:
        clip_out = embeddings
    else:
        clip_out = torch.zeros([len(x), self.clip.grid_feature_dim, self.
            clip.grid_size ** 2], dtype=x.dtype, device=x.device)
    if self.training:
        mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
        clip_out = clip_out * mask[:, None, None].to(clip_out)
    clip_out = clip_out.permute(0, 2, 1)
    clip_embed = self.clip_embed(clip_out)
    cond = [(t_embed, self.time_token_cond), (clip_embed, True), (
        low_res_embed, True)]
    return self._forward_with_cond(x, cond)
",point_e\models\transformer.py
timestep_embedding,"Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
                  These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.","def timestep_embedding(timesteps, dim, max_period=10000):
    """"""""""""
    half = dim // 2
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=
        half, dtype=torch.float32) / half).to(device=timesteps.device)
    args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1]
            )], dim=-1)
    return embedding
",point_e\models\util.py
load,Load the mesh from a .npz file.,"@classmethod
def load(cls, f: Union[str, BinaryIO]) ->'TriMesh':
    """"""""""""
    if isinstance(f, str):
        with open(f, 'rb') as reader:
            return cls.load(reader)
    else:
        obj = np.load(f)
        keys = list(obj.keys())
        verts = obj['verts']
        faces = obj['faces']
        normals = obj['normals'] if 'normals' in keys else None
        vertex_channels = {}
        face_channels = {}
        for key in keys:
            if key.startswith('v_'):
                vertex_channels[key[2:]] = obj[key]
            elif key.startswith('f_'):
                face_channels[key[2:]] = obj[key]
        return cls(verts=verts, faces=faces, normals=normals,
            vertex_channels=vertex_channels, face_channels=face_channels)
",point_e\util\mesh.py
save,Save the mesh to a .npz file.,"def save(self, f: Union[str, BinaryIO]):
    """"""""""""
    if isinstance(f, str):
        with open(f, 'wb') as writer:
            self.save(writer)
    else:
        obj_dict = dict(verts=self.verts, faces=self.faces)
        if self.normals is not None:
            obj_dict['normals'] = self.normals
        for k, v in self.vertex_channels.items():
            obj_dict[f'v_{k}'] = v
        for k, v in self.face_channels.items():
            obj_dict[f'f_{k}'] = v
        np.savez(f, **obj_dict)
",point_e\util\mesh.py
has_vertex_colors,,"def has_vertex_colors(self) ->bool:
    return self.vertex_channels is not None and all(x in self.
        vertex_channels for x in 'RGB')
",point_e\util\mesh.py
write_ply,,"def write_ply(self, raw_f: BinaryIO):
    write_ply(raw_f, coords=self.verts, rgb=np.stack([self.vertex_channels[
        x] for x in 'RGB'], axis=1) if self.has_vertex_colors() else None,
        faces=self.faces)
",point_e\util\mesh.py
marching_cubes_mesh,"Run marching cubes on the SDF predicted from a point cloud to produce a
mesh representing the 3D surface.

:param pc: the point cloud to apply marching cubes to.
:param model: the model to use to predict SDF values.
:param grid_size: the number of samples along each axis. A total of
                  grid_size**3 function evaluations are performed.
:param side_length: the size of the cube containing the model, which is
                    assumed to be centered at the origin.
:param fill_vertex_channels: if True, use the nearest neighbor of each mesh
                             vertex in the point cloud to compute vertex
                             data (e.g. colors).","def marching_cubes_mesh(pc: PointCloud, model: PointCloudSDFModel,
    batch_size: int=4096, grid_size: int=128, side_length: float=1.02,
    fill_vertex_channels: bool=True, progress: bool=False) ->TriMesh:
    """"""""""""
    voxel_size = side_length / (grid_size - 1)
    min_coord = -side_length / 2

    def int_coord_to_float(int_coords: torch.Tensor) ->torch.Tensor:
        return int_coords.float() * voxel_size + min_coord
    with torch.no_grad():
        cond = model.encode_point_clouds(torch.from_numpy(pc.coords).
            permute(1, 0).to(model.device)[None])
    indices = range(0, grid_size ** 3, batch_size)
    if progress:
        indices = tqdm(indices)
    volume = []
    for i in indices:
        indices = torch.arange(i, min(i + batch_size, grid_size ** 3), step
            =1, dtype=torch.int64, device=model.device)
        zs = int_coord_to_float(indices % grid_size)
        ys = int_coord_to_float(torch.div(indices, grid_size, rounding_mode
            ='trunc') % grid_size)
        xs = int_coord_to_float(torch.div(indices, grid_size ** 2,
            rounding_mode='trunc'))
        coords = torch.stack([xs, ys, zs], dim=0)
        with torch.no_grad():
            volume.append(model(coords[None], encoded=cond)[0])
    volume_np = torch.cat(volume).view(grid_size, grid_size, grid_size).cpu(
        ).numpy()
    if np.all(volume_np < 0) or np.all(volume_np > 0):
        volume_np -= np.mean(volume_np)
    verts, faces, normals, _ = skimage.measure.marching_cubes(volume=
        volume_np, level=0, allow_degenerate=False, spacing=(voxel_size,) * 3)
    old_f1 = faces[:, 0].copy()
    faces[:, 0] = faces[:, 1]
    faces[:, 1] = old_f1
    verts += min_coord
    return TriMesh(verts=verts, faces=faces, normals=normals,
        vertex_channels=None if not fill_vertex_channels else
        _nearest_vertex_channels(pc, verts))
",point_e\util\pc_to_mesh.py
_nearest_vertex_channels,,"def _nearest_vertex_channels(pc: PointCloud, verts: np.ndarray) ->Dict[str,
    np.ndarray]:
    nearest = pc.nearest_points(verts)
    return {ch: arr[nearest] for ch, arr in pc.channels.items()}
",point_e\util\pc_to_mesh.py
plot_point_cloud,"Render a point cloud as a plot to the given image path.

:param pc: the PointCloud to plot.
:param image_path: the path to save the image, with a file extension.
:param color: if True, show the RGB colors from the point cloud.
:param grid_size: the number of random rotations to render.","def plot_point_cloud(pc: PointCloud, color: bool=True, grid_size: int=1,
    fixed_bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float,
    float, float]]]=((-0.75, -0.75, -0.75), (0.75, 0.75, 0.75))):
    """"""""""""
    fig = plt.figure(figsize=(8, 8))
    for i in range(grid_size):
        for j in range(grid_size):
            ax = fig.add_subplot(grid_size, grid_size, 1 + j + i *
                grid_size, projection='3d')
            color_args = {}
            if color:
                color_args['c'] = np.stack([pc.channels['R'], pc.channels[
                    'G'], pc.channels['B']], axis=-1)
            c = pc.coords
            if grid_size > 1:
                theta = np.pi * 2 * (i * grid_size + j) / grid_size ** 2
                rotation = np.array([[np.cos(theta), -np.sin(theta), 0.0],
                    [np.sin(theta), np.cos(theta), 0.0], [0.0, 0.0, 1.0]])
                c = c @ rotation
            ax.scatter(c[:, 0], c[:, 1], c[:, 2], **color_args)
            if fixed_bounds is None:
                min_point = c.min(0)
                max_point = c.max(0)
                size = (max_point - min_point).max() / 2
                center = (min_point + max_point) / 2
                ax.set_xlim3d(center[0] - size, center[0] + size)
                ax.set_ylim3d(center[1] - size, center[1] + size)
                ax.set_zlim3d(center[2] - size, center[2] + size)
            else:
                ax.set_xlim3d(fixed_bounds[0][0], fixed_bounds[1][0])
                ax.set_ylim3d(fixed_bounds[0][1], fixed_bounds[1][1])
                ax.set_zlim3d(fixed_bounds[0][2], fixed_bounds[1][2])
    return fig
",point_e\util\plotting.py
write_ply,"Write a PLY file for a mesh or a point cloud.

:param coords: an [N x 3] array of floating point coordinates.
:param rgb: an [N x 3] array of vertex colors, in the range [0.0, 1.0].
:param faces: an [N x 3] array of triangles encoded as integer indices.","def write_ply(raw_f: BinaryIO, coords: np.ndarray, rgb: Optional[np.ndarray
    ]=None, faces: Optional[np.ndarray]=None):
    """"""""""""
    with buffered_writer(raw_f) as f:
        f.write(b'ply\n')
        f.write(b'format binary_little_endian 1.0\n')
        f.write(bytes(f'element vertex {len(coords)}\n', 'ascii'))
        f.write(b'property float x\n')
        f.write(b'property float y\n')
        f.write(b'property float z\n')
        if rgb is not None:
            f.write(b'property uchar red\n')
            f.write(b'property uchar green\n')
            f.write(b'property uchar blue\n')
        if faces is not None:
            f.write(bytes(f'element face {len(faces)}\n', 'ascii'))
            f.write(b'property list uchar int vertex_index\n')
        f.write(b'end_header\n')
        if rgb is not None:
            rgb = (rgb * 255.499).round().astype(int)
            vertices = [(*coord, *rgb) for coord, rgb in zip(coords.tolist(
                ), rgb.tolist())]
            format = struct.Struct('<3f3B')
            for item in vertices:
                f.write(format.pack(*item))
        else:
            format = struct.Struct('<3f')
            for vertex in coords.tolist():
                f.write(format.pack(*vertex))
        if faces is not None:
            format = struct.Struct('<B3I')
            for tri in faces.tolist():
                f.write(format.pack(len(tri), *tri))
",point_e\util\ply_util.py
buffered_writer,,"@contextmanager
def buffered_writer(raw_f: BinaryIO) ->Iterator[io.BufferedIOBase]:
    if isinstance(raw_f, io.BufferedIOBase):
        yield raw_f
    else:
        f = io.BufferedWriter(raw_f)
        yield f
        f.flush()
",point_e\util\ply_util.py
preprocess,,"def preprocess(data, channel):
    if channel in COLORS:
        return np.round(data * 255.0)
    return data
",point_e\util\point_cloud.py
load,Load the point cloud from a .npz file.,"@classmethod
def load(cls, f: Union[str, BinaryIO]) ->'PointCloud':
    """"""""""""
    if isinstance(f, str):
        with open(f, 'rb') as reader:
            return cls.load(reader)
    else:
        obj = np.load(f)
        keys = list(obj.keys())
        return PointCloud(coords=obj['coords'], channels={k: obj[k] for k in
            keys if k != 'coords'})
",point_e\util\point_cloud.py
save,Save the point cloud to a .npz file.,"def save(self, f: Union[str, BinaryIO]):
    """"""""""""
    if isinstance(f, str):
        with open(f, 'wb') as writer:
            self.save(writer)
    else:
        np.savez(f, coords=self.coords, **self.channels)
",point_e\util\point_cloud.py
write_ply,,"def write_ply(self, raw_f: BinaryIO):
    write_ply(raw_f, coords=self.coords, rgb=np.stack([self.channels[x] for
        x in 'RGB'], axis=1) if all(x in self.channels for x in 'RGB') else
        None)
",point_e\util\point_cloud.py
random_sample,"Sample a random subset of this PointCloud.

:param num_points: maximum number of points to sample.
:param subsample_kwargs: arguments to self.subsample().
:return: a reduced PointCloud, or self if num_points is not less than
         the current number of points.","def random_sample(self, num_points: int, **subsample_kwargs) ->'PointCloud':
    """"""""""""
    if len(self.coords) <= num_points:
        return self
    indices = np.random.choice(len(self.coords), size=(num_points,),
        replace=False)
    return self.subsample(indices, **subsample_kwargs)
",point_e\util\point_cloud.py
farthest_point_sample,"Sample a subset of the point cloud that is evenly distributed in space.

First, a random point is selected. Then each successive point is chosen
such that it is furthest from the currently selected points.

The time complexity of this operation is O(NM), where N is the original
number of points and M is the reduced number. Therefore, performance
can be improved by randomly subsampling points with random_sample()
before running farthest_point_sample().

:param num_points: maximum number of points to sample.
:param init_idx: if specified, the first point to sample.
:param subsample_kwargs: arguments to self.subsample().
:return: a reduced PointCloud, or self if num_points is not less than
         the current number of points.","def farthest_point_sample(self, num_points: int, init_idx: Optional[int]=
    None, **subsample_kwargs) ->'PointCloud':
    """"""""""""
    if len(self.coords) <= num_points:
        return self
    init_idx = random.randrange(len(self.coords)
        ) if init_idx is None else init_idx
    indices = np.zeros([num_points], dtype=np.int64)
    indices[0] = init_idx
    sq_norms = np.sum(self.coords ** 2, axis=-1)

    def compute_dists(idx: int):
        return sq_norms + sq_norms[idx] - 2 * (self.coords @ self.coords[idx])
    cur_dists = compute_dists(init_idx)
    for i in range(1, num_points):
        idx = np.argmax(cur_dists)
        indices[i] = idx
        cur_dists = np.minimum(cur_dists, compute_dists(idx))
    return self.subsample(indices, **subsample_kwargs)
",point_e\util\point_cloud.py
subsample,,"def subsample(self, indices: np.ndarray, average_neighbors: bool=False
    ) ->'PointCloud':
    if not average_neighbors:
        return PointCloud(coords=self.coords[indices], channels={k: v[
            indices] for k, v in self.channels.items()})
    new_coords = self.coords[indices]
    neighbor_indices = PointCloud(coords=new_coords, channels={}
        ).nearest_points(self.coords)
    neighbor_indices[indices] = np.arange(len(indices))
    new_channels = {}
    for k, v in self.channels.items():
        v_sum = np.zeros_like(v[:len(indices)])
        v_count = np.zeros_like(v[:len(indices)])
        np.add.at(v_sum, neighbor_indices, v)
        np.add.at(v_count, neighbor_indices, 1)
        new_channels[k] = v_sum / v_count
    return PointCloud(coords=new_coords, channels=new_channels)
",point_e\util\point_cloud.py
select_channels,,"def select_channels(self, channel_names: List[str]) ->np.ndarray:
    data = np.stack([preprocess(self.channels[name], name) for name in
        channel_names], axis=-1)
    return data
",point_e\util\point_cloud.py
nearest_points,"For each point in another set of points, compute the point in this
pointcloud which is closest.

:param points: an [N x 3] array of points.
:param batch_size: the number of neighbor distances to compute at once.
                   Smaller values save memory, while larger values may
                   make the computation faster.
:return: an [N] array of indices into self.coords.","def nearest_points(self, points: np.ndarray, batch_size: int=16384
    ) ->np.ndarray:
    """"""""""""
    norms = np.sum(self.coords ** 2, axis=-1)
    all_indices = []
    for i in range(0, len(points), batch_size):
        batch = points[i:i + batch_size]
        dists = norms + np.sum(batch ** 2, axis=-1)[:, None] - 2 * (batch @
            self.coords.T)
        all_indices.append(np.argmin(dists, axis=-1))
    return np.concatenate(all_indices, axis=0)
",point_e\util\point_cloud.py
combine,,"def combine(self, other: 'PointCloud') ->'PointCloud':
    assert self.channels.keys() == other.channels.keys()
    return PointCloud(coords=np.concatenate([self.coords, other.coords],
        axis=0), channels={k: np.concatenate([v, other.channels[k]], axis=0
        ) for k, v in self.channels.items()})
",point_e\util\point_cloud.py