Spaces:
Running
Running
File size: 73,292 Bytes
2e237ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 |
#!/usr/bin/env python3
"""
Enhanced NHVAS PDF to DOCX JSON Merger
Comprehensive extraction and mapping from PDF to DOCX structure
(keep pipeline intact; fix spacing, operator info mapping, vehicle-reg header mapping, date fallback)
"""
import json
import re
import sys
from pathlib import Path
from typing import Dict, List, Any, Optional
from collections import OrderedDict # <-- add this
def _nz(x):
return x if isinstance(x, str) and x.strip() else ""
SUMMARY_SECTIONS = {
"MAINTENANCE MANAGEMENT": "Maintenance Management Summary",
"MASS MANAGEMENT": "Mass Management Summary",
"FATIGUE MANAGEMENT": "Fatigue Management Summary",
}
# βββββββββββββββββββββββββββββ helpers: text cleanup & label matching βββββββββββββββββββββββββββββ
def _canon_header(s: str) -> str:
if not s: return ""
s = re.sub(r"\s+", " ", str(s)).strip().lower()
s = s.replace("β", "-").replace("β", "-")
s = re.sub(r"[/]+", " / ", s)
s = re.sub(r"[^a-z0-9#/ ]+", " ", s)
s = re.sub(r"\s+", " ", s).strip()
return s
# Header aliases -> internal keys we already use later during mapping
_VEH_HEADER_ALIASES = {
# common
"registration number": "registration",
"reg no": "registration",
"reg.#": "registration",
"no.": "no",
"no": "no",
# maintenance table
"roadworthiness certificates": "roadworthiness",
"maintenance records": "maintenance_records",
"daily checks": "daily_checks",
"fault recording reporting": "fault_recording",
"fault recording / reporting": "fault_recording",
"fault repair": "fault_repair",
# mass table
"sub contractor": "sub_contractor",
"sub-contractor": "sub_contractor",
"sub contracted vehicles statement of compliance": "sub_comp",
"sub-contracted vehicles statement of compliance": "sub_comp",
"weight verification records": "weight_verification",
"rfs suspension certification #": "rfs_certification",
"rfs suspension certification number": "rfs_certification",
"suspension system maintenance": "suspension_maintenance",
"trip records": "trip_records",
"fault recording reporting on suspension system": "fault_reporting_suspension",
"fault recording / reporting on suspension system": "fault_reporting_suspension",
}
# --- helpers ---
def build_vehicle_sections(extracted: dict) -> dict:
"""Build arrays for Maintenance and Mass tables. Maintenance uses recorded rows to include ALL entries."""
maint = {
"Registration Number": [],
"Roadworthiness Certificates": [],
"Maintenance Records": [],
"Daily Checks": [],
"Fault Recording/ Reporting": [],
"Fault Repair": [],
}
mass = {
"Registration Number": [],
"Weight Verification Records": [],
"RFS Suspension Certification #": [],
"Suspension System Maintenance": [],
"Trip Records": [],
"Fault Recording/ Reporting on Suspension System": [],
}
# Prefer authoritative maintenance rows captured during parsing (spans all pages)
if extracted.get("_maint_rows"):
for row in extracted["_maint_rows"]:
maint["Registration Number"].append(_smart_space(row.get("registration", "")))
maint["Roadworthiness Certificates"].append(_nz(row.get("roadworthiness", "")))
maint["Maintenance Records"].append(_nz(row.get("maintenance_records", "")))
maint["Daily Checks"].append(_nz(row.get("daily_checks", "")))
maint["Fault Recording/ Reporting"].append(_nz(row.get("fault_recording", "")))
maint["Fault Repair"].append(_nz(row.get("fault_repair", "")))
else:
# Fallback to vehicles map (older behavior)
for v in extracted.get("vehicles", []) or []:
if not v.get("registration"): continue
if v.get("seen_in_maintenance") or any(v.get(k) for k in ["roadworthiness","maintenance_records","daily_checks","fault_recording","fault_repair"]):
rw = _nz(v.get("roadworthiness", "")); mr = _nz(v.get("maintenance_records", "")); dc = _nz(v.get("daily_checks", ""))
fr = _nz(v.get("fault_recording", "")); rp = _nz(v.get("fault_repair", ""))
if not mr and dc: mr = dc
if not rp and fr: rp = fr
if not fr and rp: fr = rp
maint["Registration Number"].append(_smart_space(v["registration"]))
maint["Roadworthiness Certificates"].append(rw)
maint["Maintenance Records"].append(mr)
maint["Daily Checks"].append(dc)
maint["Fault Recording/ Reporting"].append(fr)
maint["Fault Repair"].append(rp)
# Mass stays as-is (from vehicles)
for v in extracted.get("vehicles", []) or []:
if not v.get("registration"): continue
if v.get("seen_in_mass") or any(v.get(k) for k in ["weight_verification","rfs_certification","suspension_maintenance","trip_records","fault_reporting_suspension"]):
mass["Registration Number"].append(_smart_space(v["registration"]))
mass["Weight Verification Records"].append(_nz(v.get("weight_verification", "")))
mass["RFS Suspension Certification #"].append(_nz(v.get("rfs_certification", "")))
mass["Suspension System Maintenance"].append(_nz(v.get("suspension_maintenance", "")))
mass["Trip Records"].append(_nz(v.get("trip_records", "")))
mass["Fault Recording/ Reporting on Suspension System"].append(_nz(v.get("fault_reporting_suspension", "")))
return {
"Vehicle Registration Numbers Maintenance": maint,
"Vehicle Registration Numbers Mass": mass,
}
def _map_header_indices(headers: list[str]) -> dict:
"""Return {internal_key: column_index} by matching/aliasing header text."""
idx = {}
for i, h in enumerate(headers or []):
ch = _canon_header(h)
# try direct alias
if ch in _VEH_HEADER_ALIASES:
idx[_VEH_HEADER_ALIASES[ch]] = i
continue
# relax a little for 'registration number' variants
if "registration" in ch and "number" in ch:
idx["registration"] = i
continue
if "roadworthiness" in ch:
idx["roadworthiness"] = i
continue
if "maintenance" in ch and "records" in ch:
idx["maintenance_records"] = i
continue
if "daily" in ch and "check" in ch:
idx["daily_checks"] = i
continue
if "fault" in ch and "record" in ch and "suspension" not in ch:
# maintenance fault-recording column
if "repair" in ch:
idx["fault_repair"] = i
else:
idx["fault_recording"] = i
continue
if "weight" in ch and "verification" in ch:
idx["weight_verification"] = i
continue
if "rfs" in ch and "certification" in ch:
idx["rfs_certification"] = i
continue
if "suspension" in ch and "maintenance" in ch:
idx["suspension_maintenance"] = i
continue
if "trip" in ch and "record" in ch:
idx["trip_records"] = i
continue
if "fault" in ch and "report" in ch and "suspension" in ch:
idx["fault_reporting_suspension"] = i
continue
return idx
def _canon(s: str) -> str:
if not s: return ""
s = re.sub(r"\s+", " ", str(s)).strip().lower()
s = re.sub(r"[^a-z0-9#]+", " ", s)
return re.sub(r"\s+", " ", s).strip()
def _smart_space(s: str) -> str:
if not s: return s
s = str(s)
# Insert spaces at typical OCR glue points
s = re.sub(r'([a-z])([A-Z])', r'\1 \2', s)
s = re.sub(r'([A-Za-z])(\d)', r'\1 \2', s)
s = re.sub(r'(\d)([A-Za-z])', r'\1 \2', s)
s = re.sub(r'([A-Z]{2,})(\d)', r'\1 \2', s)
# Fix common glued tokens
s = s.replace("POBox", "PO Box")
# Compact ordinals back together: "9 th" -> "9th", but preserve a space after the ordinal if followed by a word
s = re.sub(r'\b(\d+)\s*(st|nd|rd|th)\b', r'\1\2', s)
s = re.sub(r"\s+", " ", s).strip()
return s
def looks_like_plate(s: str) -> bool:
if not s: return False
t = re.sub(r"[\s-]", "", str(s).upper())
if not (5 <= len(t) <= 8): return False
if not re.fullmatch(r"[A-Z0-9]+", t): return False
if sum(c.isalpha() for c in t) < 2: return False
if sum(c.isdigit() for c in t) < 2: return False
if t in {"ENTRY","YES","NO","N/A","NA"}: return False
return True
def is_dateish(s: str) -> bool:
if not s: return False
s = _smart_space(s)
# tokens like 03/22, 20/02/2023, 01.02.21, 2023-02-20
return bool(re.search(r"\b\d{1,4}(?:[./-]\d{1,2}){1,2}\b", s))
def extract_date_tokens(s: str) -> list[str]:
if not s: return []
s = _smart_space(s)
return re.findall(r"\b\d{1,4}(?:[./-]\d{1,2}){1,2}\b", s)
def _clean_list(vals: List[str]) -> List[str]:
out = []
for v in vals:
v = _smart_space(v)
if v:
out.append(v)
return out
def _looks_like_manual_value(s: str) -> bool:
if not s: return False
s = s.strip()
# reject pure digits (e.g., "51902") and very short tokens
if re.fullmatch(r"\d{3,}", s):
return False
# accept if it has any letters or typical version hints
return bool(re.search(r"[A-Za-z]", s))
def _looks_like_company(s: str) -> bool:
"""Very light validation to avoid capturing labels as values."""
if not s: return False
s = _smart_space(s)
# at least two words containing letters (e.g., "Kangaroo Transport")
return bool(re.search(r"[A-Za-z]{2,}\s+[A-Za-z&]{2,}", s))
# βββββββββββββββββββββββββββββ label index (non-summary only; no values) βββββββββββββββββββββββββββββ
LABEL_INDEX: Dict[str, Dict[str, Dict[str, Any]]] = {
"Audit Information": {
"Date of Audit": {"alts": ["Date of Audit"]},
"Location of audit": {"alts": ["Location of audit", "Location"]},
"Auditor name": {"alts": ["Auditor name", "Auditor"]},
"Audit Matrix Identifier (Name or Number)": {"alts": ["Audit Matrix Identifier (Name or Number)", "Audit Matrix Identifier"]},
"Auditor Exemplar Global Reg No.": {"alts": ["Auditor Exemplar Global Reg No."]},
"NHVR Auditor Registration Number": {"alts": ["NHVR Auditor Registration Number"]},
"expiry Date:": {"alts": ["expiry Date:", "Expiry Date:"]},
},
"Operator Information": {
"Operator name (Legal entity)": {"alts": ["Operator name (Legal entity)", "Operator's Name (legal entity)"]},
"NHVAS Accreditation No. (If applicable)": {"alts": ["NHVAS Accreditation No. (If applicable)", "NHVAS Accreditation No."]},
"Registered trading name/s": {"alts": ["Registered trading name/s", "Trading name/s"]},
"Australian Company Number": {"alts": ["Australian Company Number", "ACN"]},
"NHVAS Manual (Policies and Procedures) developed by": {"alts": [
"NHVAS Manual (Policies and Procedures) developed by",
"NHVAS Manual developed by",
"Manual developed by"
]},
},
"Operator contact details": {
"Operator business address": {"alts": ["Operator business address", "Business address"]},
"Operator Postal address": {"alts": ["Operator Postal address", "Postal address"]},
"Email address": {"alts": ["Email address", "Email"]},
"Operator Telephone Number": {"alts": ["Operator Telephone Number", "Telephone", "Phone"]},
},
"Attendance List (Names and Position Titles)": {
"Attendance List (Names and Position Titles)": {"alts": ["Attendance List (Names and Position Titles)", "Attendance List"]},
},
"Nature of the Operators Business (Summary)": {
"Nature of the Operators Business (Summary):": {"alts": ["Nature of the Operators Business (Summary):"]},
},
"Accreditation Vehicle Summary": {
"Number of powered vehicles": {"alts": ["Number of powered vehicles"]},
"Number of trailing vehicles": {"alts": ["Number of trailing vehicles"]},
},
"Accreditation Driver Summary": {
"Number of drivers in BFM": {"alts": ["Number of drivers in BFM"]},
"Number of drivers in AFM": {"alts": ["Number of drivers in AFM"]},
},
"Vehicle Registration Numbers Maintenance": {
"No.": {"alts": ["No.", "No"]},
"Registration Number": {"alts": ["Registration Number", "Registration"]},
"Roadworthiness Certificates": {"alts": ["Roadworthiness Certificates", "Roadworthiness"]},
"Maintenance Records": {"alts": ["Maintenance Records"]},
"Daily Checks": {"alts": ["Daily Checks", "Daily Check"]},
"Fault Recording/ Reporting": {"alts": ["Fault Recording/ Reporting", "Fault Recording / Reporting"]},
"Fault Repair": {"alts": ["Fault Repair"]},
},
"Vehicle Registration Numbers Mass": {
"No.": {"alts": ["No.", "No"]},
"Registration Number": {"alts": ["Registration Number", "Registration"]},
"Sub contractor": {"alts": ["Sub contractor", "Sub-contractor"]},
"Sub-contracted Vehicles Statement of Compliance": {"alts": ["Sub-contracted Vehicles Statement of Compliance"]},
"Weight Verification Records": {"alts": ["Weight Verification Records"]},
"RFS Suspension Certification #": {"alts": ["RFS Suspension Certification #", "RFS Suspension Certification Number"]},
"Suspension System Maintenance": {"alts": ["Suspension System Maintenance"]},
"Trip Records": {"alts": ["Trip Records"]},
"Fault Recording/ Reporting on Suspension System": {"alts": ["Fault Recording/ Reporting on Suspension System"]},
},
"Driver / Scheduler Records Examined": {
"No.": {"alts": ["No.", "No"]},
"Driver / Scheduler Name": {"alts": ["Driver / Scheduler Name"]},
"Driver TLIF Course # Completed": {"alts": ["Driver TLIF Course # Completed"]},
"Scheduler TLIF Course # Completed": {"alts": ["Scheduler TLIF Course # Completed"]},
"Medical Certificates (Current Yes/No) Date of expiry": {"alts": ["Medical Certificates (Current Yes/No) Date of expiry"]},
"Roster / Schedule / Safe Driving Plan (Date Range)": {"alts": ["Roster / Schedule / Safe Driving Plan (Date Range)"]},
"Fit for Duty Statement Completed (Yes/No)": {"alts": ["Fit for Duty Statement Completed (Yes/No)"]},
"Work Diary Pages (Page Numbers) Electronic Work Diary Records (Date Range)": {"alts": ["Work Diary Pages (Page Numbers) Electronic Work Diary Records (Date Range)"]},
},
"NHVAS Approved Auditor Declaration": {
"Print Name": {"alts": ["Print Name"]},
"NHVR or Exemplar Global Auditor Registration Number": {"alts": ["NHVR or Exemplar Global Auditor Registration Number"]},
},
"Audit Declaration dates": {
"Audit was conducted on": {"alts": ["Audit was conducted on"]},
"Unconditional CARs closed out on:": {"alts": ["Unconditional CARs closed out on:"]},
"Conditional CARs to be closed out by:": {"alts": ["Conditional CARs to be closed out by:"]},
},
"Print accreditation name": {
"(print accreditation name)": {"alts": ["(print accreditation name)"]},
},
"Operator Declaration": {
"Print Name": {"alts": ["Print Name"]},
"Position Title": {"alts": ["Position Title"]},
},
}
class NHVASMerger:
def __init__(self):
self.debug_mode = True
self._vehicle_by_reg = OrderedDict()
def log_debug(self, msg: str):
if self.debug_mode:
print(f"π {msg}")
def normalize_std_label(self, label: str) -> str:
if not label: return ""
base = re.sub(r"\([^)]*\)", "", label)
base = re.sub(r"\s+", " ", base).strip()
m = re.match(r"^(Std\s*\d+\.\s*[^:]+?)\s*$", base, flags=re.IGNORECASE)
return m.group(1).strip() if m else base
def _pick_nearby(self, row, anchor_idx: int | None, want: str = "plate", window: int = 3) -> str:
"""Return the best cell for a field by looking at the anchor index and nearby columns.
want β {"plate","date","rf","yn"}"""
def cell(i):
if i is None or i < 0 or i >= len(row): return ""
v = row[i]
return v.strip() if isinstance(v, str) else str(v).strip()
# 1) try the anchor cell
cand = cell(anchor_idx)
if want == "plate" and looks_like_plate(cand): return _smart_space(cand)
if want == "date" and is_dateish(cand): return _smart_space(cand)
if want == "rf" and re.search(r"\bRF\s*\d+\b", cand, re.I): return _smart_space(re.search(r"\bRF\s*\d+\b", cand, re.I).group(0))
if want == "yn" and cand.strip().lower() in {"yes","no"}: return cand.strip().title()
# 2) scan a window around the anchor
if anchor_idx is not None:
for offset in range(1, window+1):
for i in (anchor_idx - offset, anchor_idx + offset):
c = cell(i)
if not c: continue
if want == "plate" and looks_like_plate(c): return _smart_space(c)
if want == "date" and is_dateish(c): return _smart_space(c)
if want == "rf":
m = re.search(r"\bRF\s*\d+\b", c, re.I)
if m: return _smart_space(m.group(0))
if want == "yn" and c.strip().lower() in {"yes","no"}: return c.strip().title()
# 3) last resort: scan whole row
joined = " ".join(str(c or "") for c in row)
if want == "plate":
for tok in joined.split():
if looks_like_plate(tok): return _smart_space(tok)
if want == "date":
tok = extract_date_tokens(joined)
return tok[0] if tok else ""
if want == "rf":
m = re.search(r"\bRF\s*\d+\b", joined, re.I)
return _smart_space(m.group(0)) if m else ""
if want == "yn":
j = f" {joined.lower()} "
if " yes " in j: return "Yes"
if " no " in j: return "No"
return ""
def _force_fill_maintenance_from_tables(self, pdf_data: Dict, merged: Dict) -> None:
"""Overwrite Maintenance arrays by scanning ALL maintenance tables across pages."""
maint = merged.get("Vehicle Registration Numbers Maintenance")
if not isinstance(maint, dict):
return
tables = (pdf_data.get("extracted_data") or {}).get("all_tables") or []
regs, rw, mr, dc, fr, rp = [], [], [], [], [], []
for t in tables:
hdrs = [_canon_header(h or "") for h in t.get("headers") or []]
if not hdrs:
continue
# detect a maintenance table
txt = " ".join(hdrs)
if ("registration" not in txt) or not any(
k in txt for k in ["maintenance records", "daily", "fault recording", "fault repair", "roadworthiness"]
):
continue
def fidx(pred):
for i, h in enumerate(hdrs):
if pred(h):
return i
return None
reg_i = fidx(lambda h: "registration" in h)
rw_i = fidx(lambda h: "roadworthiness" in h)
mr_i = fidx(lambda h: "maintenance" in h and "record" in h)
dc_i = fidx(lambda h: "daily" in h and "check" in h)
fr_i = fidx(lambda h: "fault" in h and "record" in h and "suspension" not in h)
rp_i = fidx(lambda h: "fault" in h and "repair" in h)
for r in t.get("data") or []:
def cell(i):
if i is None or i >= len(r): return ""
v = r[i]
return v.strip() if isinstance(v, str) else str(v).strip()
plate = _smart_space(cell(reg_i))
if not plate or not looks_like_plate(plate):
continue
v_rw = _nz(cell(rw_i))
v_mr = _nz(cell(mr_i))
v_dc = _nz(cell(dc_i))
v_fr = _nz(cell(fr_i))
v_rp = _nz(cell(rp_i))
# sensible fallbacks
if not v_mr and v_dc: v_mr = v_dc
if not v_rp and v_fr: v_rp = v_fr
if not v_fr and v_rp: v_fr = v_rp
regs.append(plate); rw.append(v_rw); mr.append(v_mr)
dc.append(v_dc); fr.append(v_fr); rp.append(v_rp)
if regs: # overwrite arrays only if we found rows
maint["Registration Number"] = regs
maint["Roadworthiness Certificates"] = rw
maint["Maintenance Records"] = mr
maint["Daily Checks"] = dc
maint["Fault Recording/ Reporting"] = fr
maint["Fault Repair"] = rp
def _collapse_multiline_headers(self, headers: List[str], data_rows: List[List[str]]):
"""
Merge header continuation rows (when first data rows are not numeric '1.', '2.', β¦)
into the main headers, then return (merged_headers, remaining_data_rows).
"""
merged = [_smart_space(h or "") for h in (headers or [])]
consumed = 0
header_frags: List[List[str]] = []
# Collect up to 5 leading rows that look like header fragments
for r in data_rows[:5]:
first = (str(r[0]).strip() if r else "")
if re.match(r"^\d+\.?$", first):
break # real data starts
consumed += 1
header_frags.append(r)
# Merge every collected fragment row into merged
for frag in header_frags:
for i, cell in enumerate(frag):
cell_txt = _smart_space(str(cell or "").strip())
if not cell_txt:
continue
if i >= len(merged):
merged.append(cell_txt)
else:
merged[i] = (merged[i] + " " + cell_txt).strip()
return merged, data_rows[consumed:]
def _first_attendance_name_title(self, att_list: List[str]) -> Optional[tuple[str, str]]:
"""Return (print_name, position_title) from the first 'Name - Title' in attendance."""
if not att_list:
return None
# First "Name - Title", stop before next "Name -"
pat = re.compile(
r'([A-Z][a-z]+(?:\s+[A-Z][a-z]+){0,3})\s*-\s*(.*?)(?=(?:\s+[A-Z][a-z]+(?:\s+[A-Z][a-z]+){0,3}\s*-\s*)|$)'
)
for item in att_list:
s = _smart_space(str(item))
m = pat.search(s)
if m:
name = _smart_space(m.group(1))
title = _smart_space(m.group(2))
return name, title
return None
# βββββββββββββββββββββββββββββ summary tables (unchanged logic) βββββββββββββββββββββββββββββ
def build_summary_maps(self, pdf_json: dict) -> dict:
out = {v: {} for v in SUMMARY_SECTIONS.values()}
try:
tables = pdf_json["extracted_data"]["all_tables"]
except Exception:
return out
for t in tables:
headers = [re.sub(r"\s+", " ", (h or "")).strip().upper() for h in t.get("headers", [])]
if "DETAILS" not in headers:
continue
section_key_raw = next((h for h in headers if h in SUMMARY_SECTIONS), None)
if not section_key_raw:
continue
section_name = SUMMARY_SECTIONS[section_key_raw]
for row in t.get("data", []):
if not row: continue
left = str(row[0]) if len(row) >= 1 else ""
right = str(row[1]) if len(row) >= 2 else ""
left_norm = self.normalize_std_label(left)
if left_norm and right:
prev = out[section_name].get(left_norm, "")
merged_text = (prev + " " + right).strip() if prev else right.strip()
out[section_name][left_norm] = merged_text
for sec in out:
out[sec] = {k: [_smart_space(v)] for k, v in out[sec].items() if v}
return out
# βββββββββββββββββββββββββββββ NEW: find cell by label in tables βββββββββββββββββββββββββββββ
def _find_table_value(self, tables: List[Dict], label_variants: List[str]) -> Optional[str]:
targets = {_canon(v) for v in label_variants}
for t in tables:
data = t.get("data", [])
if not data: continue
for row in data:
if not row: continue
key = _canon(str(row[0]))
if key in targets:
vals = [str(c).strip() for c in row[1:] if str(c).strip()]
if vals:
return _smart_space(" ".join(vals))
return None
# βββββββββββββββββββββββββββββ comprehensive extraction (minimal changes) βββββββββββββββββββββββββββββ
def extract_from_pdf_comprehensive(self, pdf_data: Dict) -> Dict[str, Any]:
self._vehicle_by_reg.clear()
extracted = {}
extracted_data = pdf_data.get("extracted_data", {})
tables = extracted_data.get("all_tables", [])
# Capture "Audit was conducted on" from tables; ignore placeholder "Date"
awd = self._find_table_value(
tables,
LABEL_INDEX["Audit Declaration dates"]["Audit was conducted on"]["alts"]
)
if awd:
awd = _smart_space(awd)
if re.search(r"\d", awd) and not re.fullmatch(r"date", awd, re.I):
extracted["audit_conducted_date"] = awd
# 1) Audit Information (table first)
audit_info = extracted_data.get("audit_information", {})
if audit_info:
extracted["audit_info"] = {
"date_of_audit": _smart_space(audit_info.get("DateofAudit", "")),
"location": _smart_space(audit_info.get("Locationofaudit", "")),
"auditor_name": _smart_space(audit_info.get("Auditorname", "")),
"matrix_id": _smart_space(audit_info.get("AuditMatrixIdentifier (Name or Number)", "")),
}
# If missing, try generic table lookup
for label, meta in LABEL_INDEX.get("Audit Information", {}).items():
if label == "expiry Date:": # not used in your DOCX example
continue
val = self._find_table_value(tables, meta.get("alts", [label]))
if val:
extracted.setdefault("audit_info", {})
if _canon(label) == _canon("Date of Audit"): extracted["audit_info"]["date_of_audit"] = val
elif _canon(label) == _canon("Location of audit"): extracted["audit_info"]["location"] = val
elif _canon(label) == _canon("Auditor name"): extracted["audit_info"]["auditor_name"] = val
elif _canon(label) == _canon("Audit Matrix Identifier (Name or Number)"): extracted["audit_info"]["matrix_id"] = val
# 2) Operator Information (prefer table rows)
operator_info = extracted_data.get("operator_information", {})
if operator_info:
extracted["operator_info"] = {
"name": "",
"trading_name": _smart_space(operator_info.get("trading_name", "")),
"acn": _smart_space(operator_info.get("company_number", "")),
"manual": _smart_space(operator_info.get("nhvas_accreditation", "")),
"business_address": _smart_space(operator_info.get("business_address", "")),
"postal_address": _smart_space(operator_info.get("postal_address", "")),
"email": operator_info.get("email", ""),
"phone": _smart_space(operator_info.get("phone", "")),
}
# Fill operator info via table lookup
for label, meta in LABEL_INDEX.get("Operator Information", {}).items():
val = self._find_table_value(tables, meta.get("alts", [label]))
if not val: continue
if _canon(label) == _canon("Operator name (Legal entity)") and _looks_like_company(val):
extracted.setdefault("operator_info", {})
extracted["operator_info"]["name"] = val
elif _canon(label) == _canon("Registered trading name/s"):
extracted.setdefault("operator_info", {})
extracted["operator_info"]["trading_name"] = val
elif _canon(label) == _canon("Australian Company Number"):
extracted.setdefault("operator_info", {})
extracted["operator_info"]["acn"] = val
elif _canon(label) == _canon("NHVAS Manual (Policies and Procedures) developed by"):
extracted.setdefault("operator_info", {})
if _looks_like_manual_value(val):
extracted["operator_info"]["manual"] = val
# 3) Generic table parsing (unchanged logic for other sections)
self._extract_table_data(tables, extracted)
# 4) Text parsing (kept, but spacing applied)
self._extract_text_content(extracted_data.get("all_text_content", []), extracted)
# Vehicle tables sometimes fail to land in all_tables; parse from text as a fallback
self._extract_vehicle_tables_from_text(extracted_data.get("all_text_content", []), extracted)
# 5) Vehicle/Driver data (kept)
self._extract_vehicle_driver_data(extracted_data, extracted)
# 6) Detailed mgmt (kept)
self._extract_detailed_management_data(extracted_data, extracted)
return extracted
# βββββββββββββββββββββββββββββ table classifiers βββββββββββββββββββββββββββββ
# replace your _extract_table_data with this version
def _extract_table_data(self, tables: List[Dict], extracted: Dict):
for table in tables:
headers = table.get("headers", []) or []
data_rows = table.get("data", []) or []
if not data_rows:
continue
page_num = table.get("page", 0)
self.log_debug(f"Processing table on page {page_num} with headers: {headers[:3]}...")
# π§ NEW: collapse possible multi-line headers once up front
collapsed_headers, collapsed_rows = self._collapse_multiline_headers(headers, data_rows)
# π§ Try vehicle tables FIRST using either raw or collapsed headers
if self._is_vehicle_registration_table(headers) or self._is_vehicle_registration_table(collapsed_headers):
# always extract with the collapsed header/rows so we see "Registration Number", etc.
self._extract_vehicle_registration_table(collapsed_headers, collapsed_rows, extracted, page_num)
continue
# the rest keep their existing order/logic (use the original headers/rows)
if self._is_audit_info_table(headers):
self._extract_audit_info_table(data_rows, extracted)
elif self._is_operator_info_table(headers):
self._extract_operator_info_table(data_rows, extracted)
elif self._is_attendance_table(headers):
self._extract_attendance_table(data_rows, extracted)
elif self._is_vehicle_summary_table(headers):
self._extract_vehicle_summary_table(data_rows, extracted)
elif self._is_driver_table(headers):
self._extract_driver_table(headers, data_rows, extracted)
elif self._is_management_compliance_table(headers):
self._extract_management_table(data_rows, extracted, headers)
def _is_audit_info_table(self, headers: List[str]) -> bool:
txt = " ".join(str(h) for h in headers).lower()
return any(t in txt for t in ["audit", "date", "location", "auditor"])
def _is_operator_info_table(self, headers: List[str]) -> bool:
txt = " ".join(str(h) for h in headers).lower()
return any(t in txt for t in ["operator", "company", "trading", "address"])
def _is_attendance_table(self, headers: List[str]) -> bool:
txt = " ".join(str(h) for h in headers).lower()
return "attendance" in txt
def _is_vehicle_summary_table(self, headers: List[str]) -> bool:
txt = " ".join(str(h) for h in headers).lower()
return any(t in txt for t in ["powered vehicles", "trailing vehicles", "drivers in bfm"])
def _is_vehicle_registration_table(self, headers: List[str]) -> bool:
if not headers: return False
ch = [_canon_header(h) for h in headers]
has_reg = any(
("registration" in h) or re.search(r"\breg(?:istration)?\b", h) or ("reg" in h and "no" in h)
for h in ch
)
others = ["roadworthiness","maintenance records","daily checks","fault recording","fault repair",
"sub contractor","sub-contractor","weight verification","rfs suspension","suspension system maintenance",
"trip records","fault recording reporting on suspension system","fault reporting suspension"]
has_signal = any(any(tok in h for tok in others) for h in ch)
return has_reg and has_signal
def _is_driver_table(self, headers: List[str]) -> bool:
txt = " ".join(str(h) for h in headers).lower()
return any(t in txt for t in ["driver", "scheduler", "tlif", "medical"])
def _is_management_compliance_table(self, headers: List[str]) -> bool:
txt = " ".join(str(h) for h in headers).lower()
return any(t in txt for t in ["maintenance management", "mass management", "fatigue management"])
def _extract_vehicle_tables_from_text(self, text_pages: List[Dict], extracted: Dict):
# flatten text
lines = []
for p in text_pages or []:
for ln in re.split(r"\s*\n\s*", p.get("text", "")):
ln = _smart_space(ln)
if ln: lines.append(ln)
maint_rows, mass_rows = [], []
rf_pat = re.compile(r"\bRF\s*\d+\b", re.IGNORECASE)
for ln in lines:
# find first token that looks like a rego
tokens = ln.split()
reg = next((t for t in tokens if looks_like_plate(t)), None)
if not reg:
continue
# everything after the reg on that line
tail = _smart_space(ln.split(reg, 1)[1]) if reg in ln else ""
dates = extract_date_tokens(tail)
has_rf = bool(rf_pat.search(ln)) or "suspension" in ln.lower()
if has_rf:
rfs = (rf_pat.search(ln).group(0).upper().replace(" ", "") if rf_pat.search(ln) else "")
wv = dates[0] if len(dates) > 0 else ""
rest = dates[1:]
mass_rows.append({
"registration": reg,
"sub_contractor": "Yes" if " yes " in f" {ln.lower()} " else ("No" if " no " in f" {ln.lower()} " else ""),
"sub_comp": "Yes" if " yes " in f" {ln.lower()} " else ("No" if " no " in f" {ln.lower()} " else ""),
"weight_verification": wv,
"rfs_certification": rfs or ("N/A" if "n/a" in ln.lower() else ""),
"suspension_maintenance": rest[0] if len(rest) > 0 else "",
"trip_records": rest[1] if len(rest) > 1 else "",
"fault_reporting_suspension": rest[2] if len(rest) > 2 else "",
})
else:
# map first 5 date-like tokens in sensible order; fallbacks keep table consistent
rw = dates[0] if len(dates) > 0 else ""
mr = dates[1] if len(dates) > 1 else ""
dc = dates[2] if len(dates) > 2 else ""
fr = dates[3] if len(dates) > 3 else ""
rp = dates[4] if len(dates) > 4 else ""
maint_rows.append({
"registration": reg,
"roadworthiness": rw,
"maintenance_records": mr or dc,
"daily_checks": dc,
"fault_recording": fr or rp,
"fault_repair": rp or fr,
})
# ... after building maint_rows and mass_rows ...
vlist = extracted.setdefault("vehicles", []) # ensure it always exists
if maint_rows or mass_rows:
for r in maint_rows:
r["section"] = "maintenance"
vlist.append(r)
for r in mass_rows:
r["section"] = "mass"
vlist.append(r)
self.log_debug(f"Vehicle rows (text fallback): maint={len(maint_rows)} mass={len(mass_rows)} total={len(vlist)}")
else:
self.log_debug("Vehicle rows (text fallback): none detected.")
# βββββββββββββββββββββββββββββ simple extractors (spacing applied) βββββββββββββββββββββββββββββ
def _extract_audit_info_table(self, data_rows: List[List], extracted: Dict):
ai = extracted.setdefault("audit_info", {})
for row in data_rows:
if len(row) < 2: continue
key = _canon(row[0])
val = _smart_space(" ".join(str(c).strip() for c in row[1:] if str(c).strip()))
if not val: continue
if "date" in key and "audit" in key: ai["date_of_audit"] = val
elif "location" in key: ai["location"] = val
elif "auditor" in key and "name" in key: ai["auditor_name"] = val
elif "matrix" in key: ai["matrix_id"] = val
def _extract_operator_info_table(self, data_rows: List[List], extracted: Dict):
oi = extracted.setdefault("operator_info", {})
for row in data_rows:
if len(row) < 2: continue
key = _canon(row[0])
val = _smart_space(" ".join(str(c).strip() for c in row[1:] if str(c).strip()))
if not val: continue
if "operator" in key and "name" in key and _looks_like_company(val): oi["name"] = val
elif "trading" in key: oi["trading_name"] = val
elif "australian" in key and "company" in key: oi["acn"] = val
elif "business" in key and "address" in key: oi["business_address"] = val
elif "postal" in key and "address" in key: oi["postal_address"] = val
elif "email" in key: oi["email"] = val
elif "telephone" in key or "phone" in key: oi["phone"] = val
elif "manual" in key or ("nhvas" in key and "manual" in key) or "developed" in key:
if _looks_like_manual_value(val):
oi["manual"] = val
def _extract_attendance_table(self, data_rows: List[List], extracted: Dict):
lst = []
for row in data_rows:
if not row: continue
cells = [str(c).strip() for c in row if str(c).strip()]
if not cells: continue
lst.append(_smart_space(" ".join(cells)))
if lst:
extracted["attendance"] = lst
def _extract_vehicle_summary_table(self, data_rows: List[List], extracted: Dict):
vs = extracted.setdefault("vehicle_summary", {})
for row in data_rows:
if len(row) < 2: continue
key = _canon(row[0])
value = ""
for c in row[1:]:
if str(c).strip():
value = _smart_space(str(c).strip()); break
if not value: continue
if "powered" in key and "vehicle" in key: vs["powered_vehicles"] = value
elif "trailing" in key and "vehicle" in key: vs["trailing_vehicles"] = value
elif "drivers" in key and "bfm" in key: vs["drivers_bfm"] = value
elif "drivers" in key and "afm" in key: vs["drivers_afm"] = value
# βΆβΆ REPLACED: column mapping by headers
def _extract_vehicle_registration_table(self, headers, rows, extracted, page_num):
ch = [_canon_header(h) for h in (headers or [])]
alias = _map_header_indices(headers or [])
# header indices (may be misaligned vs data; that's OK, weβll search near them)
def idx_of(*needles):
for i, h in enumerate(ch):
if all(n in h for n in needles): return i
return None
reg_i = alias.get("registration") or idx_of("registration number") or idx_of("registration") or idx_of("reg","no")
rw_i = alias.get("roadworthiness") or idx_of("roadworthiness")
maint_i = alias.get("maintenance_records") or idx_of("maintenance","records")
daily_i = alias.get("daily_checks") or idx_of("daily","check")
fr_i = alias.get("fault_recording") or idx_of("fault","recording")
rep_i = alias.get("fault_repair") or idx_of("fault","repair")
weight_i = alias.get("weight_verification") or idx_of("weight","verification")
rfs_i = alias.get("rfs_certification") or idx_of("rfs","certification")
susp_i = alias.get("suspension_maintenance") or idx_of("suspension","maintenance")
trip_i = alias.get("trip_records") or idx_of("trip","records")
frs_i = alias.get("fault_reporting_suspension") or idx_of("fault","reporting","suspension")
# classify table type by header signals
is_maint = any("roadworthiness" in h or "maintenance records" in h or ("daily" in h and "check" in h) or "fault repair" in h for h in ch)
is_mass = any("weight verification" in h or "rfs" in h or "suspension system" in h or "trip records" in h or "reporting on suspension" in h for h in ch)
maint_rows = extracted.setdefault("_maint_rows", []) if is_maint else None
added = 0
for r in rows or []:
# tolerant plate pick (handles misaligned columns)
reg = self._pick_nearby(r, reg_i, "plate", window=4)
if not reg or not looks_like_plate(reg):
continue
# collect values using tolerant picks
if is_maint:
rw = self._pick_nearby(r, rw_i, "date", window=4)
mr = self._pick_nearby(r, maint_i, "date", window=4)
dc = self._pick_nearby(r, daily_i, "date", window=4)
fr = self._pick_nearby(r, fr_i, "date", window=4)
rep = self._pick_nearby(r, rep_i, "date", window=4)
# sensible fallbacks
if not mr and dc: mr = dc
if not rep and fr: rep = fr
if not fr and rep: fr = rep
else: # mass or mixed
wv = self._pick_nearby(r, weight_i, "date", window=4)
rfs = self._pick_nearby(r, rfs_i, "rf", window=5)
sm = self._pick_nearby(r, susp_i, "date", window=4)
tr = self._pick_nearby(r, trip_i, "date", window=4)
frs = self._pick_nearby(r, frs_i, "date", window=4)
yn1 = self._pick_nearby(r, idx_of("sub","contractor"), "yn", window=3) or ""
yn2 = self._pick_nearby(r, idx_of("sub contracted vehicles statement of compliance"), "yn", window=3) or yn1
# merge into vehicle map
v = self._vehicle_by_reg.get(reg)
if v is None:
v = {"registration": reg}
self._vehicle_by_reg[reg] = v
added += 1
if is_maint:
v["seen_in_maintenance"] = True
if rw: v.setdefault("roadworthiness", rw)
if mr: v.setdefault("maintenance_records", mr)
if dc: v.setdefault("daily_checks", dc)
if fr: v.setdefault("fault_recording", fr)
if rep: v.setdefault("fault_repair", rep)
if maint_rows is not None:
maint_rows.append({
"registration": reg,
"roadworthiness": rw,
"maintenance_records": mr or dc,
"daily_checks": dc,
"fault_recording": fr or rep,
"fault_repair": rep or fr,
})
else:
v["seen_in_mass"] = True
if yn1: v.setdefault("sub_contractor", yn1)
if yn2: v.setdefault("sub_comp", yn2)
if wv: v.setdefault("weight_verification", wv)
if rfs: v.setdefault("rfs_certification", _smart_space(rfs).upper().replace(" ", ""))
if sm: v.setdefault("suspension_maintenance", sm)
if tr: v.setdefault("trip_records", tr)
if frs: v.setdefault("fault_reporting_suspension", frs)
extracted["vehicles"] = list(self._vehicle_by_reg.values())
return added
def _extract_driver_table(self, headers: List[str], data_rows: List[List], extracted: Dict):
"""Header-driven extraction for Driver / Scheduler Records."""
drivers = []
ch = [_canon_header(h) for h in headers or []]
# helpers
def find_col(needles: list[str]) -> Optional[int]:
for i, h in enumerate(ch):
if any(n in h for n in needles):
return i
return None
def find_col_rx(patterns: list[str]) -> Optional[int]:
for i, h in enumerate(ch):
if any(re.search(p, h) for p in patterns):
return i
return None
name_idx = find_col_rx([r"\bdriver\s*/\s*scheduler\s*name\b",
r"\bdriver\s+name\b", r"\bscheduler\s+name\b", r"\bname\b"])
tlif_d_idx = find_col(["driver tlif"])
tlif_s_idx = find_col(["scheduler tlif"])
medical_idx= find_col(["medical", "expiry"])
roster_idx = find_col_rx([r"\broster\b", r"\bsafe\s+driving\s+plan\b", r"\bschedule\b(?!r\b)"])
fit_idx = find_col(["fit for duty"])
diary_idx = find_col(["work diary", "electronic work diary", "page numbers"])
for row in data_rows:
if not row:
continue
name = None
if name_idx is not None and name_idx < len(row):
name = _smart_space(str(row[name_idx]).strip())
if not name:
continue
d = {"name": name}
if tlif_d_idx is not None and tlif_d_idx < len(row):
d["driver_tlif"] = _smart_space(str(row[tlif_d_idx]).strip())
if tlif_s_idx is not None and tlif_s_idx < len(row):
d["scheduler_tlif"] = _smart_space(str(row[tlif_s_idx]).strip())
if medical_idx is not None and medical_idx < len(row):
d["medical_expiry"] = _smart_space(str(row[medical_idx]).strip())
# Roster/Schedule/SDP: prefer the detected column; accept only date/range-like, not the name
if roster_idx is not None and roster_idx < len(row):
raw_roster = _smart_space(str(row[roster_idx]).strip())
if raw_roster and re.search(r"[0-9/β-]", raw_roster) and raw_roster.lower() != name.lower():
d["roster_schedule"] = raw_roster
# Fallback: scan the row for the first date/range-like cell that's not the name cell
if "roster_schedule" not in d:
for j, cell in enumerate(row):
if j == name_idx:
continue
s = _smart_space(str(cell).strip())
if s and re.search(r"[0-9/β-]", s) and s.lower() != name.lower():
d["roster_schedule"] = s
break
if fit_idx is not None and fit_idx < len(row):
d["fit_for_duty"] = _smart_space(str(row[fit_idx]).strip())
if diary_idx is not None and diary_idx < len(row):
d["work_diary"] = _smart_space(str(row[diary_idx]).strip())
drivers.append(d)
if drivers:
extracted["drivers_detailed"] = drivers
self.log_debug(f"Driver rows extracted (header-based): {len(drivers)}")
def _extract_management_table(self, data_rows: List[List], extracted: Dict, headers: List[str]):
txt = " ".join(str(h) for h in headers).lower()
comp = {}
for row in data_rows:
if len(row) < 2: continue
std = str(row[0]).strip()
val = _smart_space(str(row[1]).strip())
if std.startswith("Std") and val:
comp[std] = val
if comp:
if "maintenance" in txt: extracted["maintenance_compliance"] = comp
elif "mass" in txt: extracted["mass_compliance"] = comp
elif "fatigue" in txt: extracted["fatigue_compliance"] = comp
def _extract_text_content(self, text_pages: List[Dict], extracted: Dict):
all_text = " ".join(page.get("text", "") for page in text_pages)
all_text = _smart_space(all_text)
# business summary
patt = [
r"Nature of the Operators? Business.*?:\s*(.*?)(?:Accreditation Number|Expiry Date|$)",
r"Nature of.*?Business.*?Summary.*?:\s*(.*?)(?:Accreditation|$)"
]
for p in patt:
m = re.search(p, all_text, re.IGNORECASE | re.DOTALL)
if m:
txt = re.sub(r'\s+', ' ', m.group(1).strip())
txt = re.sub(r'\s*(Accreditation Number.*|Expiry Date.*)', '', txt, flags=re.IGNORECASE)
if len(txt) > 50:
extracted["business_summary"] = txt
break
# audit conducted date
for p in [
r"Audit was conducted on\s+([0-9]+(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4})",
r"DATE\s+([0-9]+(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4})",
r"AUDITOR SIGNATURE\s+DATE\s+([0-9]+(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4})"
]:
m = re.search(p, all_text, re.IGNORECASE)
if m:
extracted["audit_conducted_date"] = _smart_space(m.group(1).strip())
break
# print accreditation name
for p in [
r"\(print accreditation name\)\s*([A-Za-z0-9\s&().,'/\-]+?)(?:\s+DOES|\s+does|\n|$)",
r"print accreditation name.*?\n\s*([A-Za-z0-9\s&().,'/\-]+?)(?:\s+DOES|\s+does|\n|$)"
]:
m = re.search(p, all_text, re.IGNORECASE)
if m:
extracted["print_accreditation_name"] = _smart_space(m.group(1).strip())
break
# numbers in text (optional)
for p in [
r"Number of powered vehicles\s+(\d+)",
r"powered vehicles\s+(\d+)",
r"Number of trailing vehicles\s+(\d+)",
r"trailing vehicles\s+(\d+)",
r"Number of drivers in BFM\s+(\d+)",
r"drivers in BFM\s+(\d+)"
]:
m = re.search(p, all_text, re.IGNORECASE)
if m:
val = m.group(1)
if "powered" in p: extracted.setdefault("vehicle_summary", {})["powered_vehicles"] = val
elif "trailing" in p: extracted.setdefault("vehicle_summary", {})["trailing_vehicles"] = val
elif "bfm" in p.lower(): extracted.setdefault("vehicle_summary", {})["drivers_bfm"] = val
def _extract_detailed_management_data(self, extracted_data: Dict, extracted: Dict):
all_tables = extracted_data.get("all_tables", [])
for table in all_tables:
headers = table.get("headers", [])
data_rows = table.get("data", [])
page_num = table.get("page", 0)
if self._has_details_column(headers):
section = self._identify_management_section(headers)
if section:
self._extract_management_details(data_rows, extracted, section)
elif 6 <= page_num <= 15:
self._extract_summary_by_content(data_rows, headers, extracted, page_num)
def _extract_summary_by_content(self, data_rows: List[List], headers: List[str], extracted: Dict, page_num: int):
section_type = "maintenance" if 6 <= page_num <= 9 else "mass" if 10 <= page_num <= 12 else "fatigue" if 13 <= page_num <= 15 else None
if not section_type: return
details_key = f"{section_type}_summary_details"
extracted[details_key] = {}
for row in data_rows:
if len(row) < 2: continue
standard = str(row[0]).strip()
details = _smart_space(str(row[1]).strip())
if standard.startswith("Std") and details and len(details) > 10:
m = re.search(r"Std\s+(\d+)\.\s*([^(]+)", standard)
if m:
key = f"Std {m.group(1)}. {m.group(2).strip()}"
extracted[details_key][key] = details
def _has_details_column(self, headers: List[str]) -> bool:
return "details" in " ".join(str(h) for h in headers).lower()
def _identify_management_section(self, headers: List[str]) -> Optional[str]:
txt = " ".join(str(h) for h in headers).lower()
if "maintenance" in txt: return "maintenance"
if "mass" in txt: return "mass"
if "fatigue" in txt: return "fatigue"
return None
def _extract_management_details(self, data_rows: List[List], extracted: Dict, section: str):
details_key = f"{section}_details"
extracted[details_key] = {}
for row in data_rows:
if len(row) < 2: continue
standard = str(row[0]).strip()
details = _smart_space(str(row[1]).strip())
if standard.startswith("Std") and details and details != "V" and len(details) > 10:
m = re.search(r"Std\s+\d+\.\s*([^(]+)", standard)
if m:
extracted[details_key][m.group(1).strip()] = details
def _extract_vehicle_driver_data(self, extracted_data: Dict, extracted: Dict):
vehicle_regs = extracted_data.get("vehicle_registrations", [])
if vehicle_regs:
extracted["vehicle_registrations"] = vehicle_regs
driver_records = extracted_data.get("driver_records", [])
if driver_records:
extracted["driver_records"] = driver_records
# Add this method inside your NHVASMerger class, with proper indentation
# Place it after the _extract_vehicle_driver_data method
def map_vehicle_registration_arrays(self, pdf_extracted: Dict, merged: Dict):
"""Extract and map vehicle registration data (Maintenance + Mass) to DOCX arrays."""
vehicles_src = []
# Prefer rows we parsed ourselves (header-based). Fall back to curated list if present.
if "vehicles" in pdf_extracted and isinstance(pdf_extracted["vehicles"], list):
vehicles_src = pdf_extracted["vehicles"]
elif "vehicle_registrations" in pdf_extracted and isinstance(pdf_extracted["vehicle_registrations"], list):
# Normalize curated structure (list of dicts with keys like 'registration_number', etc.)
for row in pdf_extracted["vehicle_registrations"]:
if not isinstance(row, dict):
continue
v = {
"registration": _smart_space(row.get("registration_number") or row.get("registration") or ""),
# Maintenance table columns (names as seen in curated JSON)
"roadworthiness": _smart_space(row.get("roadworthiness_certificates", "")),
"maintenance_records": _smart_space(row.get("maintenance_records", "")),
"daily_checks": _smart_space(row.get("daily_checks", "")),
"fault_recording": _smart_space(row.get("fault_recording_reporting", "")),
"fault_repair": _smart_space(row.get("fault_repair", "")),
# Mass table columns (in case the curated list ever includes them)
"sub_contractor": _smart_space(row.get("sub_contractor", "")),
"sub_comp": _smart_space(row.get("sub_contracted_vehicles_statement_of_compliance", "")),
"weight_verification": _smart_space(row.get("weight_verification_records", "")),
"rfs_certification": _smart_space(row.get("rfs_suspension_certification", row.get("rfs_suspension_certification_#", ""))),
"suspension_maintenance": _smart_space(row.get("suspension_system_maintenance", "")),
"trip_records": _smart_space(row.get("trip_records", "")),
"fault_reporting_suspension": _smart_space(row.get("fault_recording_reporting_on_suspension_system", "")),
}
if v["registration"]:
vehicles_src.append(v)
if not vehicles_src:
return # nothing to map
# Build column arrays
regs = []
roadworthiness = []
maint_records = []
daily_checks = []
fault_recording = []
fault_repair = []
sub_contractors = []
weight_verification = []
rfs_certification = []
suspension_maintenance = []
trip_records = []
fault_reporting_suspension = []
for v in vehicles_src:
reg = _smart_space(v.get("registration", "")).strip()
if not reg:
continue
regs.append(reg)
roadworthiness.append(_smart_space(v.get("roadworthiness", "")).strip())
maint_records.append(_smart_space(v.get("maintenance_records", "")).strip())
daily_checks.append(_smart_space(v.get("daily_checks", "")).strip())
fault_recording.append(_smart_space(v.get("fault_recording", "")).strip())
fault_repair.append(_smart_space(v.get("fault_repair", "")).strip())
sub_contractors.append(_smart_space(v.get("sub_contractor", "")).strip())
weight_verification.append(_smart_space(v.get("weight_verification", "")).strip())
rfs_certification.append(_smart_space(v.get("rfs_certification", "")).strip())
suspension_maintenance.append(_smart_space(v.get("suspension_maintenance", "")).strip())
trip_records.append(_smart_space(v.get("trip_records", "")).strip())
fault_reporting_suspension.append(_smart_space(v.get("fault_reporting_suspension", "")).strip())
# Update Maintenance table arrays (if present in template)
if "Vehicle Registration Numbers Maintenance" in merged and regs:
m = merged["Vehicle Registration Numbers Maintenance"]
m["Registration Number"] = regs
m["Roadworthiness Certificates"] = roadworthiness
m["Maintenance Records"] = maint_records
m["Daily Checks"] = daily_checks
m["Fault Recording/ Reporting"] = fault_recording
m["Fault Repair"] = fault_repair
# Update Mass table arrays (if present in template)
if "Vehicle Registration Numbers Mass" in merged and regs:
ms = merged["Vehicle Registration Numbers Mass"]
ms["Registration Number"] = regs
ms["Sub contractor"] = sub_contractors
ms["Weight Verification Records"] = weight_verification
ms["RFS Suspension Certification #"] = rfs_certification
ms["Suspension System Maintenance"] = suspension_maintenance
ms["Trip Records"] = trip_records
ms["Fault Recording/ Reporting on Suspension System"] = fault_reporting_suspension
self.log_debug(f"Updated vehicle registration arrays for {len(regs)} vehicles")
# βββββββββββββββββββββββββββββ map to DOCX (apply spacing + safe fallbacks) βββββββββββββββββββββββββββββ
def map_to_docx_structure(self, pdf_extracted: Dict, docx_data: Dict, pdf_data: Dict) -> Dict:
merged = json.loads(json.dumps(docx_data))
# Audit Information
if "audit_info" in pdf_extracted and "Audit Information" in merged:
ai = pdf_extracted["audit_info"]
if ai.get("date_of_audit"):
merged["Audit Information"]["Date of Audit"] = [_smart_space(ai["date_of_audit"])]
if ai.get("location"):
merged["Audit Information"]["Location of audit"] = [_smart_space(ai["location"])]
if ai.get("auditor_name"):
merged["Audit Information"]["Auditor name"] = [_smart_space(ai["auditor_name"])]
if ai.get("matrix_id"):
merged["Audit Information"]["Audit Matrix Identifier (Name or Number)"] = [_smart_space(ai["matrix_id"])]
# Operator Information
if "operator_info" in pdf_extracted and "Operator Information" in merged:
op = pdf_extracted["operator_info"]
if op.get("name") and _looks_like_company(op["name"]):
merged["Operator Information"]["Operator name (Legal entity)"] = [_smart_space(op["name"])]
if op.get("trading_name"):
merged["Operator Information"]["Registered trading name/s"] = [_smart_space(op["trading_name"])]
if op.get("acn"):
merged["Operator Information"]["Australian Company Number"] = [_smart_space(op["acn"])]
if op.get("manual"):
merged["Operator Information"]["NHVAS Manual (Policies and Procedures) developed by"] = [_smart_space(op["manual"])]
# Contact details
if "operator_info" in pdf_extracted and "Operator contact details" in merged:
op = pdf_extracted["operator_info"]
if op.get("business_address"):
merged["Operator contact details"]["Operator business address"] = [_smart_space(op["business_address"])]
if op.get("postal_address"):
merged["Operator contact details"]["Operator Postal address"] = [_smart_space(op["postal_address"])]
if op.get("email"):
merged["Operator contact details"]["Email address"] = [op["email"]]
if op.get("phone"):
merged["Operator contact details"]["Operator Telephone Number"] = [_smart_space(op["phone"])]
# Attendance
if "attendance" in pdf_extracted and "Attendance List (Names and Position Titles)" in merged:
merged["Attendance List (Names and Position Titles)"]["Attendance List (Names and Position Titles)"] = _clean_list(pdf_extracted["attendance"])
# Business summary
if "business_summary" in pdf_extracted and "Nature of the Operators Business (Summary)" in merged:
merged["Nature of the Operators Business (Summary)"]["Nature of the Operators Business (Summary):"] = [_smart_space(pdf_extracted["business_summary"])]
# Vehicle summary
if "vehicle_summary" in pdf_extracted:
vs = pdf_extracted["vehicle_summary"]
if "Accreditation Vehicle Summary" in merged:
if vs.get("powered_vehicles"):
merged["Accreditation Vehicle Summary"]["Number of powered vehicles"] = [vs["powered_vehicles"]]
if vs.get("trailing_vehicles"):
merged["Accreditation Vehicle Summary"]["Number of trailing vehicles"] = [vs["trailing_vehicles"]]
if "Accreditation Driver Summary" in merged:
if vs.get("drivers_bfm"):
merged["Accreditation Driver Summary"]["Number of drivers in BFM"] = [vs["drivers_bfm"]]
if vs.get("drivers_afm"):
merged["Accreditation Driver Summary"]["Number of drivers in AFM"] = [vs["drivers_afm"]]
# Summary sections (unchanged behavior)
summary_maps = self.build_summary_maps(pdf_data)
for section_name, std_map in summary_maps.items():
if section_name in merged and std_map:
for detail_key, details_list in std_map.items():
if detail_key in merged[section_name]:
merged[section_name][detail_key] = details_list
continue
for docx_key in list(merged[section_name].keys()):
m1 = re.search(r"Std\s+(\d+)", detail_key)
m2 = re.search(r"Std\s+(\d+)", docx_key)
if m1 and m2 and m1.group(1) == m2.group(1):
merged[section_name][docx_key] = details_list
break
# Vehicle registration arrays via consolidated builder
sections = build_vehicle_sections(pdf_extracted)
if "Vehicle Registration Numbers Maintenance" in merged:
merged["Vehicle Registration Numbers Maintenance"].update(
sections["Vehicle Registration Numbers Maintenance"]
)
if "Vehicle Registration Numbers Mass" in merged:
merged["Vehicle Registration Numbers Mass"].update(
sections["Vehicle Registration Numbers Mass"]
)
# replace the whole Drivers/Scheduler block with:
if "drivers_detailed" in pdf_extracted and "Driver / Scheduler Records Examined" in merged:
drivers = pdf_extracted["drivers_detailed"]
def _looks_like_range(s):
return bool(re.search(r"[0-9]{1,2}[/-]", s or ""))
merged["Driver / Scheduler Records Examined"]["Roster / Schedule / Safe Driving Plan (Date Range)"] = [d.get("roster_schedule","") for d in drivers]
merged["Driver / Scheduler Records Examined"]["Fit for Duty Statement Completed (Yes/No)"] = [d.get("fit_for_duty","") for d in drivers]
merged["Driver / Scheduler Records Examined"]["Work Diary Pages (Page Numbers) Electronic Work Diary Records (Date Range)"] = [d.get("work_diary","") for d in drivers]
# --- Print accreditation name (robust, no UnboundLocalError) ---
if "Print accreditation name" in merged:
acc_name = "" # init
acc_name = _smart_space(pdf_extracted.get("print_accreditation_name") or "")
if not acc_name:
oi = pdf_extracted.get("operator_info") or {}
acc_name = _smart_space(oi.get("name") or "") or _smart_space(oi.get("trading_name") or "")
if acc_name:
merged["Print accreditation name"]["(print accreditation name)"] = [acc_name]
# Audit Declaration dates: prefer explicit extracted date; fallback to audit_info; ignore literal "Date"
if "Audit Declaration dates" in merged:
def _real_date(s: Optional[str]) -> bool:
return bool(s and re.search(r"\d", s) and not re.fullmatch(r"date", s.strip(), re.I))
val = pdf_extracted.get("audit_conducted_date")
if not _real_date(val):
val = (pdf_extracted.get("audit_info", {}) or {}).get("date_of_audit")
if _real_date(val):
merged["Audit Declaration dates"]["Audit was conducted on"] = [_smart_space(val)]
# Operator Declaration: page 22 image missing β derive from first Attendance "Name - Title"
if "Operator Declaration" in merged:
# If an explicit operator declaration exists, use it
if "operator_declaration" in pdf_extracted:
od = pdf_extracted["operator_declaration"]
pn = _smart_space(od.get("print_name", ""))
pt = _smart_space(od.get("position_title", ""))
if pn:
merged["Operator Declaration"]["Print Name"] = [pn]
if pt:
merged["Operator Declaration"]["Position Title"] = [pt]
else:
# Fallback: first "Name - Title" from Attendance
nt = self._first_attendance_name_title(pdf_extracted.get("attendance", []))
if nt:
merged["Operator Declaration"]["Print Name"] = [nt[0]]
merged["Operator Declaration"]["Position Title"] = [nt[1]]
# Paragraphs: fill company name for the 3 management headings; set the 2 dates
if "paragraphs" in merged:
paras = merged["paragraphs"]
audit_date = (
pdf_extracted.get("audit_conducted_date")
or pdf_extracted.get("audit_info", {}).get("date_of_audit")
)
# Prefer accreditation name, else operator legal name, else trading name
company_name = (
_smart_space(pdf_extracted.get("print_accreditation_name") or "")
or _smart_space(pdf_extracted.get("operator_info", {}).get("name") or "")
or _smart_space(pdf_extracted.get("operator_info", {}).get("trading_name") or "")
)
# Update the three layered headings
for key in ("MAINTENANCE MANAGEMENT", "MASS MANAGEMENT", "FATIGUE MANAGEMENT"):
if key in paras and company_name:
paras[key] = [company_name]
# Second-last page: date under page heading
if "NHVAS APPROVED AUDITOR DECLARATION" in paras and audit_date:
paras["NHVAS APPROVED AUDITOR DECLARATION"] = [_smart_space(audit_date)]
# Last page: date under long acknowledgement paragraph
ack_key = ("I hereby acknowledge and agree with the findings detailed in this NHVAS Audit Summary Report. "
"I have read and understand the conditions applicable to the Scheme, including the NHVAS Business Rules and Standards.")
if ack_key in paras and audit_date:
paras[ack_key] = [_smart_space(audit_date)]
self._force_fill_maintenance_from_tables(pdf_data, merged)
return merged
# βββββββββββββββββββββββββββββ merge & CLI (unchanged) βββββββββββββββββββββββββββββ
def merge_pdf_to_docx(self, docx_data: Dict, pdf_data: Dict) -> Dict:
self.log_debug("Starting comprehensive PDF extraction...")
pdf_extracted = self.extract_from_pdf_comprehensive(pdf_data)
self.log_debug(f"Extracted PDF data keys: {list(pdf_extracted.keys())}")
self.log_debug("Mapping to DOCX structure...")
merged_data = self.map_to_docx_structure(pdf_extracted, docx_data, pdf_data)
for section_name, section_data in docx_data.items():
if isinstance(section_data, dict):
for label in section_data:
if (section_name in merged_data and
label in merged_data[section_name] and
merged_data[section_name][label] != docx_data[section_name][label]):
print(f"β Updated {section_name}.{label}: {merged_data[section_name][label]}")
return merged_data
def process_files(self, docx_file: str, pdf_file: str, output_file: str):
try:
print(f"Loading DOCX JSON from: {docx_file}")
with open(docx_file, 'r', encoding='utf-8') as f:
docx_data = json.load(f)
print(f"Loading PDF JSON from: {pdf_file}")
with open(pdf_file, 'r', encoding='utf-8') as f:
pdf_data = json.load(f)
print("Merging PDF data into DOCX structure...")
merged_data = self.merge_pdf_to_docx(docx_data, pdf_data)
print(f"Saving merged data to: {output_file}")
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(merged_data, f, indent=2, ensure_ascii=False)
print("β
Merge completed successfully!")
return merged_data
except Exception as e:
print(f"β Error processing files: {str(e)}")
import traceback
traceback.print_exc()
raise
def main():
if len(sys.argv) != 4:
print("Usage: python nhvas_merger.py <docx_json_file> <pdf_json_file> <output_file>")
print("Example: python nhvas_merger.py docx_template.json pdf_extracted.json merged_output.json")
sys.exit(1)
docx_file = sys.argv[1]
pdf_file = sys.argv[2]
output_file = sys.argv[3]
for file_path in [docx_file, pdf_file]:
if not Path(file_path).exists():
print(f"β File not found: {file_path}")
sys.exit(1)
merger = NHVASMerger()
merger.process_files(docx_file, pdf_file, output_file)
if __name__ == "__main__":
main() |