Spaces:
Sleeping
Sleeping
File size: 5,928 Bytes
ec9e166 3579388 0fe1d37 ec9e166 fe87660 ec9e166 0fe1d37 ec9e166 de0dbd9 ceb03e2 de0dbd9 ceb03e2 de0dbd9 ec9e166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
"""
Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores.
This script uses the LangChain Language Model API to answer questions using Retrieval QA
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
generate responses.
"""
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
def get_pdf_text(pdf_docs):
"""
Extract text from a list of PDF documents.
Parameters
----------
pdf_docs : list
List of PDF documents to extract text from.
Returns
-------
str
Extracted text from all the PDF documents.
"""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
"""
Split the input text into chunks.
Parameters
----------
text : str
The input text to be split.
Returns
-------
list
List of text chunks.
"""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
"""
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
Parameters
----------
text_chunks : list
List of text chunks to be embedded.
Returns
-------
FAISS
A FAISS vector store containing the embeddings of the text chunks.
"""
model = "BAAI/bge-base-en-v1.5"
encode_kwargs = {
"normalize_embeddings": True
} # set True to compute cosine similarity
embeddings = HuggingFaceBgeEmbeddings(
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
"""
Create a conversational retrieval chain using a vector store and a language model.
Parameters
----------
vectorstore : FAISS
A FAISS vector store containing the embeddings of the text chunks.
Returns
-------
ConversationalRetrievalChain
A conversational retrieval chain for generating responses.
"""
llm = HuggingFaceHub(
repo_id="Shaleen123/mistrallite_medical_qa",
model_kwargs={"temperature": 0.9, "max_length": 512},
)
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
)
return conversation_chain
def handle_userinput(user_question):
"""
Handle user input and generate a response using the conversational retrieval chain.
Parameters
----------
user_question : str
The user's question.
"""
response = st.session_state.conversation({"question": user_question})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(
user_template.replace("{{MSG}}", message.content),
unsafe_allow_html=True,
)
else:
st.write(
bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True
)
def main():
"""
Putting it all together.
"""
st.set_page_config(
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
page_icon=":books:",
)
st.markdown("# Chat with a Bot")
st.markdown("This bot tries to answer questions about multiple PDFs.")
st.write(css, unsafe_allow_html=True)
# set huggingface hub token in st.text_input widget
# then hide the input
huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password")
#openai_api_key = st.text_input("Enter your OpenAI API key", type="password")
# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
#os.environ["OPENAI_API_KEY"] = openai_api_key
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == "__main__":
main()
|