Spaces:
Sleeping
Sleeping
File size: 9,879 Bytes
9aeaa64 b651864 0f6535f b651864 9aeaa64 b651864 9aeaa64 61a049c 9aeaa64 930248d c4b84f2 9aeaa64 b651864 9aeaa64 21e149a 9aeaa64 21e149a 9aeaa64 b651864 21e149a 421e8c2 21e149a 421e8c2 9aeaa64 21e149a 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 b651864 9aeaa64 930248d 9aeaa64 21e149a 9aeaa64 c4b84f2 930248d c4b84f2 21e149a 6ca60ed 9aeaa64 21e149a 930248d 21e149a 3cd275e 21e149a 9aeaa64 21e149a b651864 9aeaa64 21e149a 9aeaa64 431efca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import requests
from PIL import Image
from io import BytesIO
import tempfile
from gtts import gTTS
import re
import graphviz
import os
# Load the API key from environment variables for security
API_KEY = '715d7f1ce56d4c1abb3a803e77ffae87'
# Define API endpoints
IMAGE_API_URL = 'https://api.aimlapi.com/images/generations'
CHAT_API_URL = 'https://api.aimlapi.com/chat/completions'
# List of available chat models
CHAT_MODELS = [
"meta-llama/Meta-Llama-3-8B-Instruct-Lite",
"meta-llama/Meta-Llama-3-70B-Instruct-Lite",
"meta-llama/Meta-Llama-3-70B-Instruct-Turbo",
"meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
"gpt-4o"
]
# Load supported languages from a file
def load_languages(file_path='languages.txt'):
languages = {}
try:
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
if line.strip():
language, code = line.strip().split(': ')
languages[language] = code
except FileNotFoundError:
print(f"Error: {file_path} not found.")
return languages
languages = load_languages()
def get_answer_content(language_name, question, model_name, category, max_chars, max_lines):
language_code = languages.get(language_name, 'en')
headers = {
'Authorization': f'Bearer {API_KEY}',
'Content-Type': 'application/json'
}
data = {
"model": model_name,
"messages": [
{
"role": "user",
"content": f"Respond in {language_name} for category '{category}': {question}"
}
],
"max_tokens": 1500,
"stream": False
}
try:
response = requests.post(CHAT_API_URL, headers=headers, json=data)
response.raise_for_status()
answer_content = response.json()['choices'][0]['message']['content']
if category in ["Documentation", "Research"]:
answer_content = answer_content[:1500]
# Truncate to max_chars
if max_chars:
answer_content = answer_content[:int(max_chars)]
# Ensure the output ends with a complete sentence
if max_chars:
truncated_length = int(max_chars)
if truncated_length < len(answer_content):
# Find the last sentence-ending punctuation within the truncated length
last_punctuation_index = max(
answer_content.rfind(p) for p in ".!?"
)
if last_punctuation_index > -1 and last_punctuation_index <= truncated_length:
answer_content = answer_content[:last_punctuation_index + 1]
else:
# If no punctuation is found or it's outside the limit, truncate at the limit
answer_content = answer_content[:truncated_length]
# Limit by max_lines if specified
if max_lines:
answer_content = "\n".join(answer_content.splitlines()[:int(max_lines)])
# Remove unwanted introductory lines
lines = answer_content.splitlines()
filtered_lines = [line for line in lines if not line.lower().startswith("here's a joke about")]
filtered_content = "\n".join(filtered_lines)
return filtered_content
except requests.RequestException as e:
return f"An error occurred: {e}"
def preprocess_text(text):
return re.sub(r'[^\w\s,.!?]', '', text)
def text_to_speech_online(text, lang='en'):
try:
cleaned_text = preprocess_text(text)
tts = gTTS(text=cleaned_text, lang=lang, slow=False)
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_file:
tts.save(temp_file.name)
return temp_file.name
except Exception as e:
print(f"Text-to-speech failed: {e}")
return None
def generate_image(prompt, model_name):
headers = {"Authorization": f"Bearer {API_KEY}"}
payload = {"prompt": prompt, "model": model_name}
try:
response = requests.post(IMAGE_API_URL, headers=headers, json=payload)
response.raise_for_status()
output = response.json()
if "images" in output and output["images"]:
image_url = output["images"][0]["url"]
img_data = requests.get(image_url).content
image = Image.open(BytesIO(img_data))
return image
else:
print("Unexpected response structure:", output)
return Image.new('RGB', (512, 512), color=(255, 0, 0))
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return Image.new('RGB', (512, 512), color=(255, 0, 0))
except Exception as e:
print(f"An unexpected error occurred: {e}")
return Image.new('RGB', (512, 512), color=(255, 0, 0))
def wrap_text(text, width=30):
words = text.split()
lines, current_line, current_length = [], [], 0
for word in words:
if current_length + len(word) <= width:
current_line.append(word)
current_length += len(word) + 1
else:
lines.append(" ".join(current_line))
current_line = [word]
current_length = len(word) + 1
lines.append(" ".join(current_line))
return "\n".join(lines)
def generate_workflow_diagram(steps):
dot = graphviz.Digraph(format='png')
dot.attr(rankdir='TB', size='10,10', nodesep='0.5', ranksep='0.5', dpi='300')
steps = steps.strip().split("\n")
if not steps or steps == [""]:
return None
for i, step in enumerate(steps):
step = wrap_text(step.strip(), width=30)
if step:
dot.node(str(i), step, shape='box', width='2.0', height='0.5', fontsize='12')
if i > 0:
dot.edge(str(i - 1), str(i))
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
dot.render(temp_file.name)
return temp_file.name + '.png'
def on_button_click(language_name, question, model_name, category, max_chars, max_lines):
if not question.strip():
return "Please enter a question.", None
if category == "default":
category = "Post"
answer = get_answer_content(language_name, question, model_name, category, max_chars, max_lines)
audio_file = text_to_speech_online(answer, languages.get(language_name, 'en'))
return f"You: {question}\n\nAI MINDS:\n\n{answer}", audio_file
def on_image_button_click(prompt, model_name):
return generate_image(prompt, model_name)
def on_workflow_button_click(steps):
return generate_workflow_diagram(steps)
def clear_all():
return None, None, None, None, None
# Define Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# AI_MINDS CHATPLUS")
with gr.Tabs():
with gr.Tab("Chat"):
gr.Markdown("## Chat Section")
with gr.Row():
language_dropdown = gr.Dropdown(choices=list(languages.keys()), label="Select Language", value="English")
model_dropdown = gr.Dropdown(choices=CHAT_MODELS, label="Select Chat Model", value="meta-llama/Meta-Llama-3-70B-Instruct-Turbo")
category_dropdown = gr.Dropdown(choices=["default","Post", "Documentation", "Research", "Generation"], label="Select Category", value="default")
max_chars_input = gr.Number(label="Max Characters (Optional)", value=None, step=1, precision=0)
max_lines_input = gr.Number(label="Max Lines (Optional)", value=None, step=1, precision=0)
with gr.Row():
with gr.Column(scale=1):
question_input = gr.Textbox(label="Your Question", placeholder='Ask a question...', lines=2)
generate_button = gr.Button("Ask")
small_audio_output = gr.Audio(label="Voice Output", type="filepath", visible=True, interactive=False)
clear_button = gr.Button("Clear")
with gr.Column(scale=2):
content_output = gr.Markdown(label="Chat Output")
with gr.Tab("Image"):
gr.Markdown("## Image Generation Section")
image_prompt = gr.Textbox(label="Image Prompt", placeholder='Enter an image prompt...')
image_model_dropdown = gr.Dropdown(choices=["flux-realism", "stable-diffusion-v3-medium"], label="Select Image Model", value="flux-realism")
generated_image = gr.Image(label="Generated Image", type="pil")
image_generate_button = gr.Button("Generate Image")
with gr.Tab("Flowchart"):
gr.Markdown("## Workflow Diagram Generator")
workflow_input = gr.Textbox(lines=10, placeholder="Enter workflow steps, one per line.", label="Workflow Steps \n\n it is giving error in flowChart generation because of some dependencies issues in Hugging Face Hosting \n\n please check in colab notebook from GitHub respository for workflow perocess.\n Link is here \n\n https://github.com/shahid9455/AI_MINDS_GPTPLUS")
generate_workflow_button = gr.Button("Generate Diagram")
diagram_output = gr.Image(label="Generated Workflow Diagram")
# Define button actions
generate_button.click(on_button_click, [language_dropdown, question_input, model_dropdown, category_dropdown, max_chars_input, max_lines_input], [content_output, small_audio_output])
image_generate_button.click(on_image_button_click, [image_prompt, image_model_dropdown], [generated_image])
generate_workflow_button.click(on_workflow_button_click, [workflow_input], [diagram_output])
clear_button.click(fn=clear_all, inputs=[], outputs=[question_input, content_output, generated_image, diagram_output, small_audio_output])
# Launch the Gradio app
if __name__ == "__main__":
demo.launch() |