Spaces:
Sleeping
Sleeping
File size: 9,481 Bytes
8cbe47b 761458e 8cbe47b 761458e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import subprocess
# Check if the question_generation directory exists; if not, clone the repository
if not os.path.exists("question_generation"):
subprocess.call(["git", "clone", "https://github.com/patil-suraj/question_generation.git"])
# Download necessary files using wget (if needed)
import wget
!wget --no-check-certificate -O video-example.mp4 "https://drive.google.com/uc?export=download&id=1o6hO2tYTxgudQSwhSD1E0wVwZ_N6qR1l"
!wget --no-check-certificate -O audio-example.mp3 "https://drive.google.com/uc?export=download&id=1BcE0aITKjABWcN6JFs5lS1GFUjCQU_7Y"
# Continue with the rest of your imports and app logic
import whisper
import torch
from transformers import pipeline
from transformers.utils import logging
from langdetect import detect
import gradio as gr
from gtts import gTTS
from moviepy.editor import VideoFileClip
import yt_dlp
# Set logging verbosity
logging.set_verbosity_error()
# Load the pre-trained Whisper model
whispermodel = whisper.load_model("medium")
# Load the summarizer pipeline
summarizer = pipeline(task="summarization", model="facebook/bart-large-cnn", torch_dtype=torch.bfloat16)
# Load the translator pipeline
translator = pipeline(task="translation", model="facebook/nllb-200-distilled-600M")
# Define language mappings
languages = {
"English": "eng_Latn",
"Arabic": "arb_Arab",
}
# Load QA pipeline
qa_pipeline = pipeline(task="question-answering", model="deepset/roberta-base-squad2")
# Load question generator
from pipelines import pipeline
question_generator = pipeline("question-generation", model="valhalla/t5-small-qg-prepend", qg_format="prepend")
# Function to download audio from YouTube
def download_audio_from_youtube(youtube_url, output_path="downloaded_audio.mp3"):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'temp_audio.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'quiet': True,
'no_warnings': True,
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
os.rename('temp_audio.mp3', output_path)
return output_path
except Exception as e:
return f"Error downloading audio: {e}"
# Function to extract audio from video
def extract_audio_from_video(video_file, output_audio="extracted_audio.mp3"):
try:
with VideoFileClip(video_file) as video_clip:
video_clip.audio.write_audiofile(output_audio)
return output_audio
except Exception as e:
return f"Error extracting audio: {e}"
# Define global variables
transcription = None
languageG = None
def content_input_update(content_type):
visibility_map = {
"Audio Upload": (True, False, False),
"Video Upload": (False, False, True),
"YouTube Link": (False, True, False),
}
visible_audio, visible_youtube, visible_video = visibility_map.get(content_type, (False, False, False))
return (
gr.update(visible=visible_audio),
gr.update(visible=visible_youtube),
gr.update(visible=visible_video)
)
def transcribe_content(content_type, audio_path, youtube_link, video):
if content_type == "Audio Upload" and audio_path:
return whispermodel.transcribe(audio_path)["text"]
elif content_type == "YouTube Link" and youtube_link:
audio_file = download_audio_from_youtube(youtube_link)
return whispermodel.transcribe(audio_file)["text"]
elif content_type == "Video Upload" and video:
audio_file = extract_audio_from_video(video.name)
return whispermodel.transcribe(audio_file)["text"]
return None
def generate_summary_and_qna(summarize, qna, number):
summary_text = None
extracted_data = None
if summarize:
summary = summarizer(transcription, min_length=10, max_length=150)
summary_text = summary[0]['summary_text']
if qna:
questions = question_generator(transcription)
extracted_data = [{'question': item['question'], 'answer': item['answer'].replace('<pad> ', '')} for item in questions]
extracted_data = extracted_data[:number] if len(extracted_data) > number else extracted_data
return summary_text, extracted_data
def translator_text(summary, data, language):
if language == 'English':
return summary, data
translated_summary = None
translated_data = []
if summary is not None:
translated_summary = translator(summary, src_lang=languages["English"], tgt_lang=languages[language])[0]['translation_text']
else:
translated_summary = "No summary requested."
if data is not None:
for item in data:
question = item.get('question', '')
answer = item.get('answer', '')
translated_question = translator(question, src_lang=languages["English"], tgt_lang=languages[language])[0]['translation_text'] if question else ''
translated_answer = translator(answer, src_lang=languages["English"], tgt_lang=languages[language])[0]['translation_text'] if answer else ''
translated_data.append({
'question': translated_question,
'answer': translated_answer
})
else:
translated_data = "No Q&A requested."
return translated_summary, translated_data
def create_audio_summary(summary, language):
if summary and summary != 'No summary requested.':
tts = gTTS(text=summary, lang='ar' if language == 'Arabic' else 'en')
audio_path = "output_audio.mp3"
tts.save(audio_path)
return audio_path
return None
def main(content_type, audio_path, youtube_link, video, language, summarize, qna, number):
global transcription, languageG
languageG = language
transcription = transcribe_content(content_type, audio_path, youtube_link, video)
if not transcription:
return "No transcription available.", "No Q&A requested.", None
input_language = detect(transcription)
input_language = 'Arabic' if input_language == 'ar' else 'English'
if input_language != 'English':
transcription = translator(transcription, src_lang=languages[input_language], tgt_lang=languages['English'])[0]['translation_text']
summary_text, generated_qna = generate_summary_and_qna(summarize, qna, number)
summary, qna = translator_text(summary_text, generated_qna, language)
audio_path = create_audio_summary(summary, language)
qna_output = (
"\n\n".join(
f"**Question:** {item['question']}\n**Answer:** {item['answer']}"
for item in qna
) if qna else "No Q&A requested."
)
return summary, qna_output, audio_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Student Helper App
This app assists students by allowing them to upload audio, video, or YouTube links for automatic transcription.
It can translate content, summarize it, and generate Q&A questions to help with studying.
The app is ideal for students who want to review lectures, study materials, or any educational content more efficiently.
"""
)
content_type = gr.Radio(
choices=["Audio Upload", "Video Upload", "YouTube Link"],
label="Select Content Type",
value="Audio Upload"
)
file_input = gr.Audio(label="Upload an Audio File", visible=True, type="filepath")
youtube_input = gr.Textbox(label="Enter YouTube Link", visible=False, placeholder="https://www.youtube.com/watch?v=example")
video_input = gr.File(label="Upload a Video", visible=False, type="filepath")
language = gr.Radio(choices=["Arabic", "English"], label="Preferred Language", value="English")
summarize = gr.Checkbox(label="Summarize the content?")
qna = gr.Checkbox(label="Generate Q&A about the content?")
number = gr.Number(label="How many questions do you want at maximum?", value=5)
examples = [
["Audio Upload", "audio-example.mp3", None, None, "English", True, True, 5],
["Video Upload", None, None, "video-example.mp4", "Arabic", True, False, 3],
["YouTube Link", None, "https://www.youtube.com/watch?v=J4RqCSD--Dg", None, "English", False, True, 2]
]
gr.Examples(
examples=examples,
inputs=[content_type, file_input, youtube_input, video_input, language, summarize, qna, number],
label="Try These Examples"
)
with gr.Tab("Summary"):
summary_output = gr.Textbox(label="Summary", interactive=False)
audio_output = gr.Audio(label="Audio Summary")
with gr.Tab("Q&A"):
qna_output = gr.Markdown(label="Q&A Request")
with gr.Tab("Interactive Q&A"):
user_question = gr.Textbox(label="Ask a Question", placeholder="Enter your question here...")
qa_button = gr.Button("Get Answer")
qa_response = gr.Markdown(label="Answer")
qa_button.click(lambda question: interactive_qa(question), inputs=[user_question], outputs=qa_response)
content_type.change(content_input_update, inputs=[content_type], outputs=[file_input, youtube_input, video_input])
submit_btn = gr.Button("Submit")
submit_btn.click(main, inputs=[content_type, file_input, youtube_input, video_input, language, summarize, qna, number],
outputs=[summary_output, qna_output, audio_output])
demo.launch()
|