Spaces:
Shad0ws
/
Runtime error

File size: 9,803 Bytes
4eca20b
9eb3654
 
 
 
 
 
 
 
206f164
 
f32801f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d0cad2
9eb3654
 
 
 
 
 
 
 
 
 
 
4eca20b
9eb3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c437b94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import spaces
import gradio as gr
import numpy as np
import torch

from pulid import attention_processor as attention
from pulid.pipeline import PuLIDPipeline
from pulid.utils import resize_numpy_image_long, seed_everything

print(torch.__version__)

import shutil

def find_cuda():
    # Check if CUDA_HOME or CUDA_PATH environment variables are set
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # Search for the nvcc executable in the system's PATH
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # Remove the 'bin/nvcc' part to get the CUDA installation path
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA installation found at: {cuda_path}")
else:
    print("CUDA installation not found")


pipeline = PuLIDPipeline()

# other params
DEFAULT_NEGATIVE_PROMPT = (
    'flaws in the eyes, flaws in the face, flaws, lowres, non-HDRi, low quality, worst quality,'
    'artifacts noise, text, watermark, glitch, deformed, mutated, ugly, disfigured, hands, '
    'low resolution, partially rendered objects,  deformed or partially rendered eyes, '
    'deformed, deformed eyeballs, cross-eyed,blurry'
)


@spaces.GPU
def run(*args):
    id_image = args[0]
    supp_images = args[1:4]
    prompt, neg_prompt, scale, n_samples, seed, steps, H, W, id_scale, mode, id_mix = args[4:]

    pipeline.debug_img_list = []
    if mode == 'fidelity':
        attention.NUM_ZERO = 8
        attention.ORTHO = False
        attention.ORTHO_v2 = True
    elif mode == 'extremely style':
        attention.NUM_ZERO = 16
        attention.ORTHO = True
        attention.ORTHO_v2 = False
    else:
        raise ValueError

    if id_image is not None:
        id_image = resize_numpy_image_long(id_image, 1024)
        id_embeddings = pipeline.get_id_embedding(id_image)
        for supp_id_image in supp_images:
            if supp_id_image is not None:
                supp_id_image = resize_numpy_image_long(supp_id_image, 1024)
                supp_id_embeddings = pipeline.get_id_embedding(supp_id_image)
                id_embeddings = torch.cat(
                    (id_embeddings, supp_id_embeddings if id_mix else supp_id_embeddings[:, :5]), dim=1
                )
    else:
        id_embeddings = None

    seed_everything(seed)
    ims = []
    for _ in range(n_samples):
        img = pipeline.inference(prompt, (1, H, W), neg_prompt, id_embeddings, id_scale, scale, steps)[0]
        ims.append(np.array(img))

    return ims, pipeline.debug_img_list


_HEADER_ = '''
<h2><b>Official Gradio Demo</b></h2><h2><a href='https://github.com/ToTheBeginning/PuLID' target='_blank'><b>PuLID: Pure and Lightning ID Customization via Contrastive Alignment</b></a></h2>

**PuLID** is a tuning-free ID customization approach. PuLID maintains high ID fidelity while effectively reducing interference with the original model’s behavior.

Code: <a href='https://github.com/ToTheBeginning/PuLID' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/2404.16022' target='_blank'>ArXiv</a>.

❗️❗️❗️**Tips:**
- we provide some examples in the bottom, you can try these example prompts first
- a single ID image is usually sufficient, you can also supplement with additional auxiliary images
- We offer two modes: fidelity mode and extremely style mode. In most cases, the default fidelity mode should suffice. If you find that the generated results are not stylized enough, you can choose the extremely style mode.

'''  # noqa E501

_CITE_ = r"""
If PuLID is helpful, please help to ⭐ the <a href='https://github.com/ToTheBeginning/PuLID' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/ToTheBeginning/PuLID?style=social)](https://github.com/ToTheBeginning/PuLID)
---
🚀 **Share**
If you have generated satisfying or interesting images with PuLID, please share them with us or your friends!

📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{guo2024pulid,
  title={PuLID: Pure and Lightning ID Customization via Contrastive Alignment},
  author={Guo, Zinan and Wu, Yanze and Chen, Zhuowei and Chen, Lang and He, Qian},
  journal={arXiv preprint arXiv:2404.16022},
  year={2024}
}
```

📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](placeholder) for details.

📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>wuyanze123@gmail.com</b> or <b>guozinan.1@bytedance.com</b>.
"""  # noqa E501


with gr.Blocks(title="PuLID", css=".gr-box {border-color: #8136e2}") as demo:
    gr.Markdown(_HEADER_)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                face_image = gr.Image(label="ID image (main)", sources="upload", type="numpy", height=256)
                supp_image1 = gr.Image(
                    label="Additional ID image (auxiliary)", sources="upload", type="numpy", height=256
                )
                supp_image2 = gr.Image(
                    label="Additional ID image (auxiliary)", sources="upload", type="numpy", height=256
                )
                supp_image3 = gr.Image(
                    label="Additional ID image (auxiliary)", sources="upload", type="numpy", height=256
                )
            prompt = gr.Textbox(label="Prompt", value='portrait,color,cinematic,in garden,soft light,detailed face')
            submit = gr.Button("Generate")
            neg_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT)
            scale = gr.Slider(
                label="CFG, recommend value range [1, 1.5], 1 will be faster ",
                value=1.2,
                minimum=1,
                maximum=1.5,
                step=0.1,
            )
            n_samples = gr.Slider(label="Num samples", value=4, minimum=1, maximum=8, step=1)
            seed = gr.Slider(
                label="Seed", value=42, minimum=np.iinfo(np.uint32).min, maximum=np.iinfo(np.uint32).max, step=1
            )
            steps = gr.Slider(label="Steps", value=4, minimum=1, maximum=100, step=1)
            with gr.Row():
                H = gr.Slider(label="Height", value=1024, minimum=512, maximum=2024, step=64)
                W = gr.Slider(label="Width", value=768, minimum=512, maximum=2024, step=64)
            with gr.Row():
                id_scale = gr.Slider(label="ID scale", minimum=0, maximum=5, step=0.05, value=0.8, interactive=True)
                mode = gr.Dropdown(label="mode", choices=['fidelity', 'extremely style'], value='fidelity')
                id_mix = gr.Checkbox(
                    label="ID Mix (if you want to mix two ID image, please turn this on, otherwise, turn this off)",
                    value=False,
                )

            gr.Markdown("## Examples")
            example_inps = [
                [
                    'portrait,cinematic,wolf ears,white hair',
                    'example_inputs/liuyifei.png',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='realistic')

            example_inps = [
                [
                    'portrait, impressionist painting, loose brushwork, vibrant color, light and shadow play',
                    'example_inputs/zcy.webp',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='painting style')

            example_inps = [
                [
                    'portrait, flat papercut style, silhouette, clean cuts, paper, sharp edges, minimalist,color block,man',
                    'example_inputs/lecun.jpg',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='papercut style')

            example_inps = [
                [
                    'woman,cartoon,solo,Popmart Blind Box, Super Mario, 3d',
                    'example_inputs/rihanna.webp',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='3d style')

            example_inps = [
                [
                    'portrait, the legend of zelda, anime',
                    'example_inputs/liuyifei.png',
                    'extremely style',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='anime style')

            example_inps = [
                [
                    'portrait, superman',
                    'example_inputs/lecun.jpg',
                    'example_inputs/lifeifei.jpg',
                    'fidelity',
                    True,
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, supp_image1, mode, id_mix], label='id mix')

        with gr.Column():
            output = gr.Gallery(label='Output', elem_id="gallery")
            intermediate_output = gr.Gallery(label='DebugImage', elem_id="gallery", visible=False)
            gr.Markdown(_CITE_)

    inps = [
        face_image,
        supp_image1,
        supp_image2,
        supp_image3,
        prompt,
        neg_prompt,
        scale,
        n_samples,
        seed,
        steps,
        H,
        W,
        id_scale,
        mode,
        id_mix,
    ]
    submit.click(fn=run, inputs=inps, outputs=[output, intermediate_output])


demo.launch()