Spaces:
Sleeping
Sleeping
File size: 10,011 Bytes
b7b7347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from transformers import HfArgumentParser
from dataclasses import dataclass, field
import logging
from shared import CustomTokens, extract_sponsor_matches, GeneralArguments, seconds_to_time
from segment import (
generate_segments,
extract_segment,
MIN_SAFETY_TOKENS,
SAFETY_TOKENS_PERCENTAGE,
word_start,
word_end,
SegmentationArguments
)
import preprocess
from errors import TranscriptError
from model import get_model_tokenizer_classifier, InferenceArguments
logging.basicConfig()
logger = logging.getLogger(__name__)
@dataclass
class PredictArguments(InferenceArguments):
video_id: str = field(
default=None,
metadata={
'help': 'Video to predict segments for'}
)
def __post_init__(self):
if self.video_id is not None:
self.video_ids.append(self.video_id)
super().__post_init__()
MATCH_WINDOW = 25 # Increase for accuracy, but takes longer: O(n^3)
MERGE_TIME_WITHIN = 8 # Merge predictions if they are within x seconds
# Any prediction whose start time is <= this will be set to start at 0
START_TIME_ZERO_THRESHOLD = 0.08
def filter_and_add_probabilities(predictions, classifier, min_probability):
"""Use classifier to filter predictions"""
if not predictions:
return predictions
# We update the predicted category from the extractive transformer
# if the classifier is confident enough it is another category
texts = [
preprocess.clean_text(' '.join([x['text'] for x in pred['words']]))
for pred in predictions
]
classifications = classifier(texts)
filtered_predictions = []
for prediction, probabilities in zip(predictions, classifications):
predicted_probabilities = {
p['label'].lower(): p['score'] for p in probabilities}
# Get best category + probability
classifier_category = max(
predicted_probabilities, key=predicted_probabilities.get)
classifier_probability = predicted_probabilities[classifier_category]
if (prediction['category'] not in predicted_probabilities) \
or (classifier_category != 'none' and classifier_probability > 0.5): # TODO make param
# Unknown category or we are confident enough to overrule,
# so change category to what was predicted by classifier
prediction['category'] = classifier_category
if prediction['category'] == 'none':
continue # Ignore if categorised as nothing
prediction['probability'] = predicted_probabilities[prediction['category']]
if min_probability is not None and prediction['probability'] < min_probability:
continue # Ignore if below threshold
# TODO add probabilities, but remove None and normalise rest
prediction['probabilities'] = predicted_probabilities
# if prediction['probability'] < classifier_args.min_probability:
# continue
filtered_predictions.append(prediction)
return filtered_predictions
def predict(video_id, model, tokenizer, segmentation_args, words=None, classifier=None, min_probability=None):
# Allow words to be passed in so that we don't have to get the words if we already have them
if words is None:
words = preprocess.get_words(video_id)
if not words:
raise TranscriptError('Unable to retrieve transcript')
segments = generate_segments(
words,
tokenizer,
segmentation_args
)
predictions = segments_to_predictions(segments, model, tokenizer)
# Add words back to time_ranges
for prediction in predictions:
# Stores words in the range
prediction['words'] = extract_segment(
words, prediction['start'], prediction['end'])
if classifier is not None:
predictions = filter_and_add_probabilities(
predictions, classifier, min_probability)
return predictions
def greedy_match(list, sublist):
# Return index and length of longest matching sublist
best_i = -1
best_j = -1
best_k = 0
for i in range(len(list)): # Start position in main list
for j in range(len(sublist)): # Start position in sublist
for k in range(len(sublist)-j, 0, -1): # Width of sublist window
if k > best_k and list[i:i+k] == sublist[j:j+k]:
best_i, best_j, best_k = i, j, k
break # Since window size decreases
return best_i, best_j, best_k
def predict_sponsor_from_texts(texts, model, tokenizer):
clean_texts = list(map(preprocess.clean_text, texts))
return predict_sponsor_from_cleaned_texts(clean_texts, model, tokenizer)
def predict_sponsor_from_cleaned_texts(cleaned_texts, model, tokenizer):
"""Given a body of text, predict the words which are part of the sponsor"""
model_device = next(model.parameters()).device
decoded_outputs = []
# Do individually, to avoid running out of memory for long videos
for cleaned_words in cleaned_texts:
text = CustomTokens.EXTRACT_SEGMENTS_PREFIX.value + \
' '.join(cleaned_words)
input_ids = tokenizer(text, return_tensors='pt',
truncation=True).input_ids.to(model_device)
# Optimise output length so that we do not generate unnecessarily long texts
max_out_len = round(min(
max(
len(input_ids[0])/SAFETY_TOKENS_PERCENTAGE,
len(input_ids[0]) + MIN_SAFETY_TOKENS
),
model.model_dim)
)
outputs = model.generate(input_ids, max_length=max_out_len)
decoded_outputs.append(tokenizer.decode(
outputs[0], skip_special_tokens=True))
return decoded_outputs
def segments_to_predictions(segments, model, tokenizer):
predicted_time_ranges = []
cleaned_texts = [
[x['cleaned'] for x in cleaned_segment]
for cleaned_segment in segments
]
sponsorship_texts = predict_sponsor_from_cleaned_texts(
cleaned_texts, model, tokenizer)
matches = extract_sponsor_matches(sponsorship_texts)
for segment_matches, cleaned_batch, segment in zip(matches, cleaned_texts, segments):
for match in segment_matches: # one segment might contain multiple sponsors/ir/selfpromos
matched_text = match['text'].split()
i1, j1, k1 = greedy_match(
cleaned_batch, matched_text[:MATCH_WINDOW])
i2, j2, k2 = greedy_match(
cleaned_batch, matched_text[-MATCH_WINDOW:])
extracted_words = segment[i1:i2+k2]
if not extracted_words:
continue
predicted_time_ranges.append({
'start': word_start(extracted_words[0]),
'end': word_end(extracted_words[-1]),
'category': match['category']
})
# Necessary to sort matches by start time
predicted_time_ranges.sort(key=word_start)
# Merge overlapping predictions and sponsorships that are close together
# Caused by model having max input size
prev_prediction = None
final_predicted_time_ranges = []
for range in predicted_time_ranges:
start_time = range['start'] if range['start'] > START_TIME_ZERO_THRESHOLD else 0
end_time = range['end']
if prev_prediction is not None and \
(start_time <= prev_prediction['end'] <= end_time or # Merge overlapping segments
(range['category'] == prev_prediction['category'] # Merge disconnected segments if same category and within threshold
and start_time - prev_prediction['end'] <= MERGE_TIME_WITHIN)):
# Extend last prediction range
final_predicted_time_ranges[-1]['end'] = end_time
else: # No overlap, is a new prediction
final_predicted_time_ranges.append({
'start': start_time,
'end': end_time,
'category': range['category']
})
prev_prediction = range
return final_predicted_time_ranges
def main():
# Test on unseen data
logger.setLevel(logging.DEBUG)
hf_parser = HfArgumentParser((
PredictArguments,
SegmentationArguments,
GeneralArguments
))
predict_args, segmentation_args, general_args = hf_parser.parse_args_into_dataclasses()
if not predict_args.video_ids:
logger.error(
'No video IDs supplied. Use `--video_id`, `--video_ids`, or `--channel_id`.')
return
model, tokenizer, classifier = get_model_tokenizer_classifier(
predict_args, general_args)
for video_id in predict_args.video_ids:
try:
predictions = predict(video_id, model, tokenizer, segmentation_args,
classifier=classifier,
min_probability=predict_args.min_probability)
except TranscriptError:
logger.warning(f'No transcript available for {video_id}')
continue
video_url = f'https://www.youtube.com/watch?v={video_id}'
if not predictions:
logger.info(f'No predictions found for {video_url}')
continue
# TODO use predict_args.output_as_json
print(len(predictions), 'predictions found for', video_url)
for index, prediction in enumerate(predictions, start=1):
print(f'Prediction #{index}:')
print('Text: "',
' '.join([w['text'] for w in prediction['words']]), '"', sep='')
print('Time:', seconds_to_time(
prediction['start']), '\u2192', seconds_to_time(prediction['end']))
print('Category:', prediction.get('category'))
if 'probability' in prediction:
print('Probability:', prediction['probability'])
print()
print()
if __name__ == '__main__':
main()
|