Spaces:
Runtime error
Runtime error
File size: 1,491 Bytes
98a69c9 5759877 c7bc375 1253b4a 98a69c9 1253b4a 5759877 98a69c9 25fbd7f 98a69c9 c7bc375 98a69c9 25fbd7f 98a69c9 5759877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import torch
import torchaudio
import gradio as gr
from transformers import Wav2Vec2FeatureExtractor,AutoConfig,pipeline
config = AutoConfig.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
model = Wav2Vec2FeatureExtractor.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
def speech_file_to_array_fn(path, sampling_rate):
with tempfile.NamedTemporaryFile(suffix=".wav") as temp_audio_file:
# Copy the contents of the uploaded audio file to the temporary file
temp_audio_file.write(open(path, "rb").read())
temp_audio_file.flush()
# Load the audio file using torchaudio
speech_array, _sampling_rate = torchaudio.load(temp_audio_file.name)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = model(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
def SER(audio):
return predict(audio,model.sampling_rate)
iface = gr.Interface(fn=SER, inputs="audio", outputs="text")
iface.launch(share=False) |