File size: 20,901 Bytes
a8b3f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import json
import logging
import uuid
from collections.abc import Mapping, Sequence
from datetime import datetime, timezone
from typing import Optional, Union, cast
from core.agent.entities import AgentEntity, AgentToolEntity
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.base_app_runner import AppRunner
from core.app.entities.app_invoke_entities import (
AgentChatAppGenerateEntity,
ModelConfigWithCredentialsEntity,
)
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.file import file_manager
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMUsage,
PromptMessage,
PromptMessageContent,
PromptMessageTool,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.utils.extract_thread_messages import extract_thread_messages
from core.tools.entities.tool_entities import (
ToolParameter,
ToolRuntimeVariablePool,
)
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.tool import Tool
from core.tools.tool_manager import ToolManager
from extensions.ext_database import db
from factories import file_factory
from models.model import Conversation, Message, MessageAgentThought, MessageFile
from models.tools import ToolConversationVariables
logger = logging.getLogger(__name__)
class BaseAgentRunner(AppRunner):
def __init__(
self,
tenant_id: str,
application_generate_entity: AgentChatAppGenerateEntity,
conversation: Conversation,
app_config: AgentChatAppConfig,
model_config: ModelConfigWithCredentialsEntity,
config: AgentEntity,
queue_manager: AppQueueManager,
message: Message,
user_id: str,
memory: Optional[TokenBufferMemory] = None,
prompt_messages: Optional[list[PromptMessage]] = None,
variables_pool: Optional[ToolRuntimeVariablePool] = None,
db_variables: Optional[ToolConversationVariables] = None,
model_instance: ModelInstance = None,
) -> None:
self.tenant_id = tenant_id
self.application_generate_entity = application_generate_entity
self.conversation = conversation
self.app_config = app_config
self.model_config = model_config
self.config = config
self.queue_manager = queue_manager
self.message = message
self.user_id = user_id
self.memory = memory
self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
self.variables_pool = variables_pool
self.db_variables_pool = db_variables
self.model_instance = model_instance
# init callback
self.agent_callback = DifyAgentCallbackHandler()
# init dataset tools
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager=queue_manager,
app_id=self.app_config.app_id,
message_id=message.id,
user_id=user_id,
invoke_from=self.application_generate_entity.invoke_from,
)
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
tenant_id=tenant_id,
dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
return_resource=app_config.additional_features.show_retrieve_source,
invoke_from=application_generate_entity.invoke_from,
hit_callback=hit_callback,
)
# get how many agent thoughts have been created
self.agent_thought_count = (
db.session.query(MessageAgentThought)
.filter(
MessageAgentThought.message_id == self.message.id,
)
.count()
)
db.session.close()
# check if model supports stream tool call
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
self.stream_tool_call = True
else:
self.stream_tool_call = False
# check if model supports vision
if model_schema and ModelFeature.VISION in (model_schema.features or []):
self.files = application_generate_entity.files
else:
self.files = []
self.query = None
self._current_thoughts: list[PromptMessage] = []
def _repack_app_generate_entity(
self, app_generate_entity: AgentChatAppGenerateEntity
) -> AgentChatAppGenerateEntity:
"""
Repack app generate entity
"""
if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
return app_generate_entity
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
"""
convert tool to prompt message tool
"""
tool_entity = ToolManager.get_agent_tool_runtime(
tenant_id=self.tenant_id,
app_id=self.app_config.app_id,
agent_tool=tool,
invoke_from=self.application_generate_entity.invoke_from,
)
tool_entity.load_variables(self.variables_pool)
message_tool = PromptMessageTool(
name=tool.tool_name,
description=tool_entity.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
},
)
parameters = tool_entity.get_all_runtime_parameters()
for parameter in parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = parameter.type.as_normal_type()
if parameter.type in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}:
continue
enum = []
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options]
message_tool.parameters["properties"][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or "",
}
if len(enum) > 0:
message_tool.parameters["properties"][parameter.name]["enum"] = enum
if parameter.required:
message_tool.parameters["required"].append(parameter.name)
return message_tool, tool_entity
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
"""
convert dataset retriever tool to prompt message tool
"""
prompt_tool = PromptMessageTool(
name=tool.identity.name,
description=tool.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
},
)
for parameter in tool.get_runtime_parameters():
parameter_type = "string"
prompt_tool.parameters["properties"][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or "",
}
if parameter.required:
if parameter.name not in prompt_tool.parameters["required"]:
prompt_tool.parameters["required"].append(parameter.name)
return prompt_tool
def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
"""
Init tools
"""
tool_instances = {}
prompt_messages_tools = []
for tool in self.app_config.agent.tools if self.app_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
# api tool may be deleted
continue
# save tool entity
tool_instances[tool.tool_name] = tool_entity
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# convert dataset tools into ModelRuntime Tool format
for dataset_tool in self.dataset_tools:
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# save tool entity
tool_instances[dataset_tool.identity.name] = dataset_tool
return tool_instances, prompt_messages_tools
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
"""
update prompt message tool
"""
# try to get tool runtime parameters
tool_runtime_parameters = tool.get_runtime_parameters() or []
for parameter in tool_runtime_parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = parameter.type.as_normal_type()
if parameter.type in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}:
continue
enum = []
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options]
prompt_tool.parameters["properties"][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or "",
}
if len(enum) > 0:
prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
if parameter.required:
if parameter.name not in prompt_tool.parameters["required"]:
prompt_tool.parameters["required"].append(parameter.name)
return prompt_tool
def create_agent_thought(
self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
) -> MessageAgentThought:
"""
Create agent thought
"""
thought = MessageAgentThought(
message_id=message_id,
message_chain_id=None,
thought="",
tool=tool_name,
tool_labels_str="{}",
tool_meta_str="{}",
tool_input=tool_input,
message=message,
message_token=0,
message_unit_price=0,
message_price_unit=0,
message_files=json.dumps(messages_ids) if messages_ids else "",
answer="",
observation="",
answer_token=0,
answer_unit_price=0,
answer_price_unit=0,
tokens=0,
total_price=0,
position=self.agent_thought_count + 1,
currency="USD",
latency=0,
created_by_role="account",
created_by=self.user_id,
)
db.session.add(thought)
db.session.commit()
db.session.refresh(thought)
db.session.close()
self.agent_thought_count += 1
return thought
def save_agent_thought(
self,
agent_thought: MessageAgentThought,
tool_name: str,
tool_input: Union[str, dict],
thought: str,
observation: Union[str, dict],
tool_invoke_meta: Union[str, dict],
answer: str,
messages_ids: list[str],
llm_usage: LLMUsage = None,
) -> MessageAgentThought:
"""
Save agent thought
"""
agent_thought = db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()
if thought is not None:
agent_thought.thought = thought
if tool_name is not None:
agent_thought.tool = tool_name
if tool_input is not None:
if isinstance(tool_input, dict):
try:
tool_input = json.dumps(tool_input, ensure_ascii=False)
except Exception as e:
tool_input = json.dumps(tool_input)
agent_thought.tool_input = tool_input
if observation is not None:
if isinstance(observation, dict):
try:
observation = json.dumps(observation, ensure_ascii=False)
except Exception as e:
observation = json.dumps(observation)
agent_thought.observation = observation
if answer is not None:
agent_thought.answer = answer
if messages_ids is not None and len(messages_ids) > 0:
agent_thought.message_files = json.dumps(messages_ids)
if llm_usage:
agent_thought.message_token = llm_usage.prompt_tokens
agent_thought.message_price_unit = llm_usage.prompt_price_unit
agent_thought.message_unit_price = llm_usage.prompt_unit_price
agent_thought.answer_token = llm_usage.completion_tokens
agent_thought.answer_price_unit = llm_usage.completion_price_unit
agent_thought.answer_unit_price = llm_usage.completion_unit_price
agent_thought.tokens = llm_usage.total_tokens
agent_thought.total_price = llm_usage.total_price
# check if tool labels is not empty
labels = agent_thought.tool_labels or {}
tools = agent_thought.tool.split(";") if agent_thought.tool else []
for tool in tools:
if not tool:
continue
if tool not in labels:
tool_label = ToolManager.get_tool_label(tool)
if tool_label:
labels[tool] = tool_label.to_dict()
else:
labels[tool] = {"en_US": tool, "zh_Hans": tool}
agent_thought.tool_labels_str = json.dumps(labels)
if tool_invoke_meta is not None:
if isinstance(tool_invoke_meta, dict):
try:
tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
except Exception as e:
tool_invoke_meta = json.dumps(tool_invoke_meta)
agent_thought.tool_meta_str = tool_invoke_meta
db.session.commit()
db.session.close()
def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
"""
convert tool variables to db variables
"""
db_variables = (
db.session.query(ToolConversationVariables)
.filter(
ToolConversationVariables.conversation_id == self.message.conversation_id,
)
.first()
)
db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
db.session.commit()
db.session.close()
def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize agent history
"""
result = []
# check if there is a system message in the beginning of the conversation
for prompt_message in prompt_messages:
if isinstance(prompt_message, SystemPromptMessage):
result.append(prompt_message)
messages: list[Message] = (
db.session.query(Message)
.filter(
Message.conversation_id == self.message.conversation_id,
)
.order_by(Message.created_at.desc())
.all()
)
messages = list(reversed(extract_thread_messages(messages)))
for message in messages:
if message.id == self.message.id:
continue
result.append(self.organize_agent_user_prompt(message))
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
if agent_thoughts:
for agent_thought in agent_thoughts:
tools = agent_thought.tool
if tools:
tools = tools.split(";")
tool_calls: list[AssistantPromptMessage.ToolCall] = []
tool_call_response: list[ToolPromptMessage] = []
try:
tool_inputs = json.loads(agent_thought.tool_input)
except Exception as e:
tool_inputs = {tool: {} for tool in tools}
try:
tool_responses = json.loads(agent_thought.observation)
except Exception as e:
tool_responses = dict.fromkeys(tools, agent_thought.observation)
for tool in tools:
# generate a uuid for tool call
tool_call_id = str(uuid.uuid4())
tool_calls.append(
AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool,
arguments=json.dumps(tool_inputs.get(tool, {})),
),
)
)
tool_call_response.append(
ToolPromptMessage(
content=tool_responses.get(tool, agent_thought.observation),
name=tool,
tool_call_id=tool_call_id,
)
)
result.extend(
[
AssistantPromptMessage(
content=agent_thought.thought,
tool_calls=tool_calls,
),
*tool_call_response,
]
)
if not tools:
result.append(AssistantPromptMessage(content=agent_thought.thought))
else:
if message.answer:
result.append(AssistantPromptMessage(content=message.answer))
db.session.close()
return result
def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
if files:
file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
if file_extra_config:
file_objs = file_factory.build_from_message_files(
message_files=files, tenant_id=self.tenant_id, config=file_extra_config
)
else:
file_objs = []
if not file_objs:
return UserPromptMessage(content=message.query)
else:
prompt_message_contents: list[PromptMessageContent] = []
prompt_message_contents.append(TextPromptMessageContent(data=message.query))
for file_obj in file_objs:
prompt_message_contents.append(file_manager.to_prompt_message_content(file_obj))
return UserPromptMessage(content=prompt_message_contents)
else:
return UserPromptMessage(content=message.query)
|