File size: 20,901 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import json
import logging
import uuid
from collections.abc import Mapping, Sequence
from datetime import datetime, timezone
from typing import Optional, Union, cast

from core.agent.entities import AgentEntity, AgentToolEntity
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.base_app_runner import AppRunner
from core.app.entities.app_invoke_entities import (
    AgentChatAppGenerateEntity,
    ModelConfigWithCredentialsEntity,
)
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.file import file_manager
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
    AssistantPromptMessage,
    LLMUsage,
    PromptMessage,
    PromptMessageContent,
    PromptMessageTool,
    SystemPromptMessage,
    TextPromptMessageContent,
    ToolPromptMessage,
    UserPromptMessage,
)
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.utils.extract_thread_messages import extract_thread_messages
from core.tools.entities.tool_entities import (
    ToolParameter,
    ToolRuntimeVariablePool,
)
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.tool import Tool
from core.tools.tool_manager import ToolManager
from extensions.ext_database import db
from factories import file_factory
from models.model import Conversation, Message, MessageAgentThought, MessageFile
from models.tools import ToolConversationVariables

logger = logging.getLogger(__name__)


class BaseAgentRunner(AppRunner):
    def __init__(
        self,
        tenant_id: str,
        application_generate_entity: AgentChatAppGenerateEntity,
        conversation: Conversation,
        app_config: AgentChatAppConfig,
        model_config: ModelConfigWithCredentialsEntity,
        config: AgentEntity,
        queue_manager: AppQueueManager,
        message: Message,
        user_id: str,
        memory: Optional[TokenBufferMemory] = None,
        prompt_messages: Optional[list[PromptMessage]] = None,
        variables_pool: Optional[ToolRuntimeVariablePool] = None,
        db_variables: Optional[ToolConversationVariables] = None,
        model_instance: ModelInstance = None,
    ) -> None:
        self.tenant_id = tenant_id
        self.application_generate_entity = application_generate_entity
        self.conversation = conversation
        self.app_config = app_config
        self.model_config = model_config
        self.config = config
        self.queue_manager = queue_manager
        self.message = message
        self.user_id = user_id
        self.memory = memory
        self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
        self.variables_pool = variables_pool
        self.db_variables_pool = db_variables
        self.model_instance = model_instance

        # init callback
        self.agent_callback = DifyAgentCallbackHandler()
        # init dataset tools
        hit_callback = DatasetIndexToolCallbackHandler(
            queue_manager=queue_manager,
            app_id=self.app_config.app_id,
            message_id=message.id,
            user_id=user_id,
            invoke_from=self.application_generate_entity.invoke_from,
        )
        self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
            tenant_id=tenant_id,
            dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
            retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
            return_resource=app_config.additional_features.show_retrieve_source,
            invoke_from=application_generate_entity.invoke_from,
            hit_callback=hit_callback,
        )
        # get how many agent thoughts have been created
        self.agent_thought_count = (
            db.session.query(MessageAgentThought)
            .filter(
                MessageAgentThought.message_id == self.message.id,
            )
            .count()
        )
        db.session.close()

        # check if model supports stream tool call
        llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
        model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
        if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
            self.stream_tool_call = True
        else:
            self.stream_tool_call = False

        # check if model supports vision
        if model_schema and ModelFeature.VISION in (model_schema.features or []):
            self.files = application_generate_entity.files
        else:
            self.files = []
        self.query = None
        self._current_thoughts: list[PromptMessage] = []

    def _repack_app_generate_entity(
        self, app_generate_entity: AgentChatAppGenerateEntity
    ) -> AgentChatAppGenerateEntity:
        """
        Repack app generate entity
        """
        if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
            app_generate_entity.app_config.prompt_template.simple_prompt_template = ""

        return app_generate_entity

    def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
        """
        convert tool to prompt message tool
        """
        tool_entity = ToolManager.get_agent_tool_runtime(
            tenant_id=self.tenant_id,
            app_id=self.app_config.app_id,
            agent_tool=tool,
            invoke_from=self.application_generate_entity.invoke_from,
        )
        tool_entity.load_variables(self.variables_pool)

        message_tool = PromptMessageTool(
            name=tool.tool_name,
            description=tool_entity.description.llm,
            parameters={
                "type": "object",
                "properties": {},
                "required": [],
            },
        )

        parameters = tool_entity.get_all_runtime_parameters()
        for parameter in parameters:
            if parameter.form != ToolParameter.ToolParameterForm.LLM:
                continue

            parameter_type = parameter.type.as_normal_type()
            if parameter.type in {
                ToolParameter.ToolParameterType.SYSTEM_FILES,
                ToolParameter.ToolParameterType.FILE,
                ToolParameter.ToolParameterType.FILES,
            }:
                continue
            enum = []
            if parameter.type == ToolParameter.ToolParameterType.SELECT:
                enum = [option.value for option in parameter.options]

            message_tool.parameters["properties"][parameter.name] = {
                "type": parameter_type,
                "description": parameter.llm_description or "",
            }

            if len(enum) > 0:
                message_tool.parameters["properties"][parameter.name]["enum"] = enum

            if parameter.required:
                message_tool.parameters["required"].append(parameter.name)

        return message_tool, tool_entity

    def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
        """
        convert dataset retriever tool to prompt message tool
        """
        prompt_tool = PromptMessageTool(
            name=tool.identity.name,
            description=tool.description.llm,
            parameters={
                "type": "object",
                "properties": {},
                "required": [],
            },
        )

        for parameter in tool.get_runtime_parameters():
            parameter_type = "string"

            prompt_tool.parameters["properties"][parameter.name] = {
                "type": parameter_type,
                "description": parameter.llm_description or "",
            }

            if parameter.required:
                if parameter.name not in prompt_tool.parameters["required"]:
                    prompt_tool.parameters["required"].append(parameter.name)

        return prompt_tool

    def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
        """
        Init tools
        """
        tool_instances = {}
        prompt_messages_tools = []

        for tool in self.app_config.agent.tools if self.app_config.agent else []:
            try:
                prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
            except Exception:
                # api tool may be deleted
                continue
            # save tool entity
            tool_instances[tool.tool_name] = tool_entity
            # save prompt tool
            prompt_messages_tools.append(prompt_tool)

        # convert dataset tools into ModelRuntime Tool format
        for dataset_tool in self.dataset_tools:
            prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
            # save prompt tool
            prompt_messages_tools.append(prompt_tool)
            # save tool entity
            tool_instances[dataset_tool.identity.name] = dataset_tool

        return tool_instances, prompt_messages_tools

    def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
        """
        update prompt message tool
        """
        # try to get tool runtime parameters
        tool_runtime_parameters = tool.get_runtime_parameters() or []

        for parameter in tool_runtime_parameters:
            if parameter.form != ToolParameter.ToolParameterForm.LLM:
                continue

            parameter_type = parameter.type.as_normal_type()
            if parameter.type in {
                ToolParameter.ToolParameterType.SYSTEM_FILES,
                ToolParameter.ToolParameterType.FILE,
                ToolParameter.ToolParameterType.FILES,
            }:
                continue
            enum = []
            if parameter.type == ToolParameter.ToolParameterType.SELECT:
                enum = [option.value for option in parameter.options]

            prompt_tool.parameters["properties"][parameter.name] = {
                "type": parameter_type,
                "description": parameter.llm_description or "",
            }

            if len(enum) > 0:
                prompt_tool.parameters["properties"][parameter.name]["enum"] = enum

            if parameter.required:
                if parameter.name not in prompt_tool.parameters["required"]:
                    prompt_tool.parameters["required"].append(parameter.name)

        return prompt_tool

    def create_agent_thought(
        self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
    ) -> MessageAgentThought:
        """
        Create agent thought
        """
        thought = MessageAgentThought(
            message_id=message_id,
            message_chain_id=None,
            thought="",
            tool=tool_name,
            tool_labels_str="{}",
            tool_meta_str="{}",
            tool_input=tool_input,
            message=message,
            message_token=0,
            message_unit_price=0,
            message_price_unit=0,
            message_files=json.dumps(messages_ids) if messages_ids else "",
            answer="",
            observation="",
            answer_token=0,
            answer_unit_price=0,
            answer_price_unit=0,
            tokens=0,
            total_price=0,
            position=self.agent_thought_count + 1,
            currency="USD",
            latency=0,
            created_by_role="account",
            created_by=self.user_id,
        )

        db.session.add(thought)
        db.session.commit()
        db.session.refresh(thought)
        db.session.close()

        self.agent_thought_count += 1

        return thought

    def save_agent_thought(
        self,
        agent_thought: MessageAgentThought,
        tool_name: str,
        tool_input: Union[str, dict],
        thought: str,
        observation: Union[str, dict],
        tool_invoke_meta: Union[str, dict],
        answer: str,
        messages_ids: list[str],
        llm_usage: LLMUsage = None,
    ) -> MessageAgentThought:
        """
        Save agent thought
        """
        agent_thought = db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()

        if thought is not None:
            agent_thought.thought = thought

        if tool_name is not None:
            agent_thought.tool = tool_name

        if tool_input is not None:
            if isinstance(tool_input, dict):
                try:
                    tool_input = json.dumps(tool_input, ensure_ascii=False)
                except Exception as e:
                    tool_input = json.dumps(tool_input)

            agent_thought.tool_input = tool_input

        if observation is not None:
            if isinstance(observation, dict):
                try:
                    observation = json.dumps(observation, ensure_ascii=False)
                except Exception as e:
                    observation = json.dumps(observation)

            agent_thought.observation = observation

        if answer is not None:
            agent_thought.answer = answer

        if messages_ids is not None and len(messages_ids) > 0:
            agent_thought.message_files = json.dumps(messages_ids)

        if llm_usage:
            agent_thought.message_token = llm_usage.prompt_tokens
            agent_thought.message_price_unit = llm_usage.prompt_price_unit
            agent_thought.message_unit_price = llm_usage.prompt_unit_price
            agent_thought.answer_token = llm_usage.completion_tokens
            agent_thought.answer_price_unit = llm_usage.completion_price_unit
            agent_thought.answer_unit_price = llm_usage.completion_unit_price
            agent_thought.tokens = llm_usage.total_tokens
            agent_thought.total_price = llm_usage.total_price

        # check if tool labels is not empty
        labels = agent_thought.tool_labels or {}
        tools = agent_thought.tool.split(";") if agent_thought.tool else []
        for tool in tools:
            if not tool:
                continue
            if tool not in labels:
                tool_label = ToolManager.get_tool_label(tool)
                if tool_label:
                    labels[tool] = tool_label.to_dict()
                else:
                    labels[tool] = {"en_US": tool, "zh_Hans": tool}

        agent_thought.tool_labels_str = json.dumps(labels)

        if tool_invoke_meta is not None:
            if isinstance(tool_invoke_meta, dict):
                try:
                    tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
                except Exception as e:
                    tool_invoke_meta = json.dumps(tool_invoke_meta)

            agent_thought.tool_meta_str = tool_invoke_meta

        db.session.commit()
        db.session.close()

    def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
        """
        convert tool variables to db variables
        """
        db_variables = (
            db.session.query(ToolConversationVariables)
            .filter(
                ToolConversationVariables.conversation_id == self.message.conversation_id,
            )
            .first()
        )

        db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
        db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
        db.session.commit()
        db.session.close()

    def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
        """
        Organize agent history
        """
        result = []
        # check if there is a system message in the beginning of the conversation
        for prompt_message in prompt_messages:
            if isinstance(prompt_message, SystemPromptMessage):
                result.append(prompt_message)

        messages: list[Message] = (
            db.session.query(Message)
            .filter(
                Message.conversation_id == self.message.conversation_id,
            )
            .order_by(Message.created_at.desc())
            .all()
        )

        messages = list(reversed(extract_thread_messages(messages)))

        for message in messages:
            if message.id == self.message.id:
                continue

            result.append(self.organize_agent_user_prompt(message))
            agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
            if agent_thoughts:
                for agent_thought in agent_thoughts:
                    tools = agent_thought.tool
                    if tools:
                        tools = tools.split(";")
                        tool_calls: list[AssistantPromptMessage.ToolCall] = []
                        tool_call_response: list[ToolPromptMessage] = []
                        try:
                            tool_inputs = json.loads(agent_thought.tool_input)
                        except Exception as e:
                            tool_inputs = {tool: {} for tool in tools}
                        try:
                            tool_responses = json.loads(agent_thought.observation)
                        except Exception as e:
                            tool_responses = dict.fromkeys(tools, agent_thought.observation)

                        for tool in tools:
                            # generate a uuid for tool call
                            tool_call_id = str(uuid.uuid4())
                            tool_calls.append(
                                AssistantPromptMessage.ToolCall(
                                    id=tool_call_id,
                                    type="function",
                                    function=AssistantPromptMessage.ToolCall.ToolCallFunction(
                                        name=tool,
                                        arguments=json.dumps(tool_inputs.get(tool, {})),
                                    ),
                                )
                            )
                            tool_call_response.append(
                                ToolPromptMessage(
                                    content=tool_responses.get(tool, agent_thought.observation),
                                    name=tool,
                                    tool_call_id=tool_call_id,
                                )
                            )

                        result.extend(
                            [
                                AssistantPromptMessage(
                                    content=agent_thought.thought,
                                    tool_calls=tool_calls,
                                ),
                                *tool_call_response,
                            ]
                        )
                    if not tools:
                        result.append(AssistantPromptMessage(content=agent_thought.thought))
            else:
                if message.answer:
                    result.append(AssistantPromptMessage(content=message.answer))

        db.session.close()

        return result

    def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
        files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
        if files:
            file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())

            if file_extra_config:
                file_objs = file_factory.build_from_message_files(
                    message_files=files, tenant_id=self.tenant_id, config=file_extra_config
                )
            else:
                file_objs = []

            if not file_objs:
                return UserPromptMessage(content=message.query)
            else:
                prompt_message_contents: list[PromptMessageContent] = []
                prompt_message_contents.append(TextPromptMessageContent(data=message.query))
                for file_obj in file_objs:
                    prompt_message_contents.append(file_manager.to_prompt_message_content(file_obj))

                return UserPromptMessage(content=prompt_message_contents)
        else:
            return UserPromptMessage(content=message.query)