File size: 39,758 Bytes
d6c416b 113eb1c d6c416b 7a85ad5 d6c416b 113eb1c 6bdbc55 94e688e 6bdbc55 113eb1c d13268c d6c416b 698ee1c 6bdbc55 113eb1c 698ee1c 113eb1c 6bdbc55 698ee1c 113eb1c 698ee1c 113eb1c 698ee1c 6bdbc55 d6c416b 113eb1c 6bdbc55 113eb1c 6bdbc55 113eb1c 6bdbc55 d6c416b 6bdbc55 d6c416b 113eb1c 6bdbc55 113eb1c d6c416b 6bdbc55 d6c416b 113eb1c 6bdbc55 113eb1c d6c416b 113eb1c 6bdbc55 113eb1c 6bdbc55 113eb1c d6c416b 113eb1c d6c416b 6bdbc55 d6c416b 6bdbc55 d6c416b 6bdbc55 d6c416b 6bdbc55 113eb1c d6c416b 6bdbc55 d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 6bdbc55 d6c416b 6bdbc55 d6c416b 6bdbc55 d6c416b 6bdbc55 113eb1c d6c416b 113eb1c d6c416b 6bdbc55 d6c416b 6bdbc55 d6c416b 113eb1c d6c416b 49c4123 d6c416b 49c4123 113eb1c 6bdbc55 113eb1c 6bdbc55 113eb1c d6c416b 6bdbc55 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b d13268c af1c430 d6c416b 7a85ad5 d6c416b 6bdbc55 d6c416b 113eb1c d6c416b 113eb1c d6c416b d13268c 6bdbc55 698ee1c 6bdbc55 d6c416b 698ee1c d6c416b 6bdbc55 113eb1c 6bdbc55 113eb1c 6bdbc55 113eb1c 6bdbc55 113eb1c 6bdbc55 113eb1c 6bdbc55 698ee1c 6bdbc55 b4b7587 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c b4b7587 113eb1c d6c416b 113eb1c 6bdbc55 d6c416b 113eb1c 698ee1c 113eb1c 75d10b9 b4b7587 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 113eb1c d6c416b 48d7aa1 d6c416b 113eb1c 698ee1c 113eb1c 698ee1c 113eb1c af1c430 d6c416b 113eb1c d6c416b 698ee1c 6bdbc55 698ee1c 6bdbc55 698ee1c 6bdbc55 698ee1c 6bdbc55 9cb780e 113eb1c b4b7587 113eb1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 |
import gradio as gr
from gradio import update
import json
import re
from datetime import datetime
from typing import Literal
import os
import importlib
from llm_handler import send_to_llm_wrapper
from main import generate_data, PROMPT_1
from topics import TOPICS
from system_messages import SYSTEM_MESSAGES_VODALUS
import random
from params import load_params, save_params
import pandas as pd
import csv
from datasets import load_dataset
from huggingface_hub import list_datasets, HfApi, hf_hub_download
from gradio.components import State
ANNOTATION_CONFIG_FILE = "annotation_config.json"
OUTPUT_FILE_PATH = "dataset.jsonl"
llm_provider_state = State("")
def load_llm_config():
params = load_params()
return (
params.get('PROVIDER', ''),
params.get('BASE_URL', ''),
params.get('MODEL', ''), # Add this line
params.get('WORKSPACE', ''),
params.get('API_KEY', ''),
params.get('max_tokens', 2048),
params.get('temperature', 0.7),
params.get('top_p', 0.9),
params.get('frequency_penalty', 0.0),
params.get('presence_penalty', 0.0)
)
def save_llm_config(provider, base_url, model, workspace, api_key, max_tokens, temperature, top_p, frequency_penalty, presence_penalty):
save_params({
'PROVIDER': provider,
'BASE_URL': base_url,
'MODEL': model, # Add this line
'WORKSPACE': workspace,
'API_KEY': api_key,
'max_tokens': max_tokens,
'temperature': temperature,
'top_p': top_p,
'frequency_penalty': frequency_penalty,
'presence_penalty': presence_penalty
})
return "LLM configuration saved successfully"
def update_model_visibility(provider):
return gr.update(visible=provider in ["local-model", "openai"])
def load_annotation_config():
try:
with open(ANNOTATION_CONFIG_FILE, 'r') as f:
return json.load(f)
except FileNotFoundError:
return {
"quality_scale": {
"name": "Relevance for Training",
"description": "Rate the relevance of this entry for training",
"scale": [
{"value": "1", "label": "Invalid"},
{"value": "2", "label": "Somewhat invalid"},
{"value": "3", "label": "Neutral"},
{"value": "4", "label": "Somewhat valid"},
{"value": "5", "label": "Valid"}
]
},
"tag_categories": [
{
"name": "High Quality Indicators",
"type": "multiple",
"tags": ["Well-formatted", "Informative", "Coherent", "Engaging"]
},
{
"name": "Low Quality Indicators",
"type": "multiple",
"tags": ["Poorly formatted", "Lacks context", "Repetitive", "Irrelevant"]
},
{
"name": "Content Warnings",
"type": "multiple",
"tags": ["Offensive language", "Hate speech", "Violence", "Adult content"]
}
],
"free_text_fields": [
{
"name": "Additional Notes",
"description": "Any other observations or comments"
}
]
}
def load_csv_dataset(file_path):
data = []
with open(file_path, 'r') as f:
reader = csv.DictReader(f)
for row in reader:
data.append(row)
return data
def load_txt_dataset(file_path):
with open(file_path, 'r') as f:
return [{"content": line.strip()} for line in f if line.strip()]
def save_annotation_config(config):
with open(ANNOTATION_CONFIG_FILE, 'w') as f:
json.dump(config, f, indent=2)
def load_jsonl_dataset(file_path):
if not os.path.exists(file_path):
return []
with open(file_path, 'r') as f:
return [json.loads(line.strip()) for line in f if line.strip()]
def load_dataset(file):
if file is None:
return "", 0, 0, "No file uploaded", "3", [], [], [], ""
file_path = file.name
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == '.csv':
data = load_csv_dataset(file_path)
elif file_extension == '.txt':
data = load_txt_dataset(file_path)
elif file_extension == '.jsonl':
data = load_jsonl_dataset(file_path)
else:
return "", 0, 0, f"Unsupported file type: {file_extension}", "3", [], [], [], ""
if not data:
return "", 0, 0, "No data found in the file", "3", [], [], [], ""
first_row = json.dumps(data[0], indent=2)
return first_row, 0, len(data), f"Row: 1/{len(data)}", "3", [], [], [], ""
def save_row(file_path, index, row_data):
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'jsonl':
save_jsonl_row(file_path, index, row_data)
elif file_extension == 'csv':
save_csv_row(file_path, index, row_data)
elif file_extension == 'txt':
save_txt_row(file_path, index, row_data)
else:
raise ValueError(f"Unsupported file format: {file_extension}")
return f"Row {index} saved successfully"
def save_jsonl_row(file_path, index, row_data):
with open(file_path, 'r') as f:
lines = f.readlines()
lines[index] = row_data + '\n'
with open(file_path, 'w') as f:
f.writelines(lines)
def save_csv_row(file_path, index, row_data):
df = pd.read_csv(file_path)
row_dict = json.loads(row_data)
for col, value in row_dict.items():
df.at[index, col] = value
df.to_csv(file_path, index=False)
def save_txt_row(file_path, index, row_data):
with open(file_path, 'r') as f:
lines = f.readlines()
row_dict = json.loads(row_data)
lines[index] = row_dict.get('content', '') + '\n'
with open(file_path, 'w') as f:
f.writelines(lines)
def get_row(file_path, index):
data = load_jsonl_dataset(file_path)
if not data:
return "", 0
if 0 <= index < len(data):
return json.dumps(data[index], indent=2), len(data)
return "", len(data)
def json_to_markdown(json_str):
try:
data = json.loads(json_str)
markdown = f"# System\n\n{data['system']}\n\n# Instruction\n\n{data['instruction']}\n\n# Response\n\n{data['response']}"
return markdown
except json.JSONDecodeError:
return "Error: Invalid JSON format"
def markdown_to_json(markdown_str):
sections = re.split(r'#\s+(System|Instruction|Response)\s*\n', markdown_str)
if len(sections) != 7: # Should be: ['', 'System', content, 'Instruction', content, 'Response', content]
return "Error: Invalid markdown format"
json_data = {
"system": sections[2].strip(),
"instruction": sections[4].strip(),
"response": sections[6].strip()
}
return json.dumps(json_data, indent=2)
def navigate_rows(file_path: str, current_index: int, direction: Literal["prev", "next"], metadata_config):
new_index = max(0, current_index + (-1 if direction == "prev" else 1))
return load_and_show_row(file_path, new_index, metadata_config)
def load_and_show_row(file_path, index, metadata_config):
row_data, total = get_row(file_path, index)
if not row_data:
return ("", index, total, f"Row: {index + 1}/{total}", "3", [], [], [], "")
try:
data = json.loads(row_data)
except json.JSONDecodeError:
return (row_data, index, total, f"Row: {index + 1}/{total}", "3", [], [], [], "Error: Invalid JSON")
metadata = data.get("metadata", {}).get("annotation", {})
quality = metadata.get("quality", "3")
high_quality_tags = metadata.get("tags", {}).get("high_quality", [])
low_quality_tags = metadata.get("tags", {}).get("low_quality", [])
toxic_tags = metadata.get("tags", {}).get("toxic", [])
other = metadata.get("free_text", {}).get("Additional Notes", "")
return (row_data, index, total, f"Row: {index + 1}/{total}", quality,
high_quality_tags, low_quality_tags, toxic_tags, other)
def save_row_with_metadata(file_path, index, row_data, config, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
data = json.loads(row_data)
metadata = {
"annotation": {
"quality": quality,
"tags": {
"high_quality": high_quality_tags,
"low_quality": low_quality_tags,
"toxic": toxic_tags
},
"free_text": {
"Additional Notes": other
}
}
}
data["metadata"] = metadata
return save_row(file_path, index, json.dumps(data))
def update_annotation_ui(config):
quality_choices = [(item["value"], item["label"]) for item in config["quality_scale"]["scale"]]
quality_label = gr.Radio(
label=config["quality_scale"]["name"],
choices=quality_choices,
info=config["quality_scale"]["description"]
)
tag_components = []
for category in config["tag_categories"]:
tag_component = gr.CheckboxGroup(
label=category["name"],
choices=category["tags"]
)
tag_components.append(tag_component)
other_description = gr.Textbox(
label=config["free_text_fields"][0]["name"],
lines=3
)
return quality_label, *tag_components, other_description
def load_config_to_ui(config):
return (
config["quality_scale"]["name"],
config["quality_scale"]["description"],
[[item["value"], item["label"]] for item in config["quality_scale"]["scale"]],
[[cat["name"], cat["type"], ", ".join(cat["tags"])] for cat in config["tag_categories"]],
[[field["name"], field["description"]] for field in config["free_text_fields"]]
)
def save_config_from_ui(name, description, scale, categories, fields, topics, all_topics_text):
if all_topics_text.visible:
topics_list = [topic.strip() for topic in all_topics_text.split("\n") if topic.strip()]
else:
topics_list = [topic[0] for topic in topics]
new_config = {
"quality_scale": {
"name": name,
"description": description,
"scale": [{"value": row[0], "label": row[1]} for row in scale]
},
"tag_categories": [{"name": row[0], "type": row[1], "tags": row[2].split(", ")} for row in categories],
"free_text_fields": [{"name": row[0], "description": row[1]} for row in fields],
"topics": topics_list
}
save_annotation_config(new_config)
return "Configuration saved successfully", new_config
# Add this new function to generate the preview
def generate_preview(row_data, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
try:
data = json.loads(row_data)
metadata = {
"annotation": {
"quality": quality,
"tags": {
"high_quality": high_quality_tags,
"low_quality": low_quality_tags,
"toxic": toxic_tags
},
"free_text": {
"Additional Notes": other
}
}
}
data["metadata"] = metadata
return json.dumps(data, indent=2)
except json.JSONDecodeError:
return "Error: Invalid JSON in the current row data"
def load_dataset_config():
params = load_params()
with open("system_messages.py", "r") as f:
system_messages_content = f.read()
vodalus_system_message = re.search(r'SYSTEM_MESSAGES_VODALUS = \[(.*?)\]', system_messages_content, re.DOTALL).group(1).strip()[3:-3]
with open("main.py", "r") as f:
main_content = f.read()
prompt_1 = re.search(r'PROMPT_1 = """(.*?)"""', main_content, re.DOTALL).group(1).strip()
topics_module = importlib.import_module("topics")
topics_list = topics_module.TOPICS
return {
"vodalus_system_message": vodalus_system_message,
"prompt_1": prompt_1,
"topics": [[topic] for topic in topics_list],
"max_tokens": params.get('max_tokens', 2048),
"temperature": params.get('temperature', 0.7),
"top_p": params.get('top_p', 0.9),
"frequency_penalty": params.get('frequency_penalty', 0.0),
"presence_penalty": params.get('presence_penalty', 0.0)
}
def edit_all_topics_func(topics):
topics_list = [topic[0] for topic in topics]
jsonl_rows = "\n".join([json.dumps({"topic": topic}) for topic in topics_list])
return (
gr.update(visible=False),
gr.update(value=jsonl_rows, visible=True),
gr.update(visible=True)
)
def update_topics_from_text(text):
try:
# Try parsing as JSONL
topics_list = [json.loads(line)["topic"] for line in text.split("\n") if line.strip()]
except json.JSONDecodeError:
# If parsing fails, treat as plain text
topics_list = [topic.strip() for topic in text.split("\n") if topic.strip()]
return gr.Dataframe.update(value=[[topic] for topic in topics_list], visible=True), gr.TextArea.update(visible=False)
def save_dataset_config(system_messages, prompt_1, topics, max_tokens, temperature, top_p, frequency_penalty, presence_penalty):
# Save VODALUS_SYSTEM_MESSAGE to system_messages.py
with open("system_messages.py", "w") as f:
f.write(f'SYSTEM_MESSAGES_VODALUS = [\n"""\n{system_messages}\n""",\n]\n')
# Save PROMPT_1 to main.py
with open("main.py", "r") as f:
main_content = f.read()
updated_main_content = re.sub(
r'PROMPT_1 = """.*?"""',
f'PROMPT_1 = """\n{prompt_1}\n"""',
main_content,
flags=re.DOTALL
)
with open("main.py", "w") as f:
f.write(updated_main_content)
# Save TOPICS to topics.py
topics_content = "TOPICS = [\n"
for topic in topics:
topics_content += f' "{topic[0]}",\n'
topics_content += "]\n"
with open("topics.py", "w") as f:
f.write(topics_content)
save_params({
'max_tokens': max_tokens,
'temperature': temperature,
'top_p': top_p,
'frequency_penalty': frequency_penalty,
'presence_penalty': presence_penalty
})
return "Dataset configuration saved successfully"
def chat_with_llm(message, history):
try:
msg_list = [{"role": "system", "content": "You are an AI assistant helping with dataset annotation and quality checking."}]
for h in history:
msg_list.append({"role": "user", "content": h[0]})
msg_list.append({"role": "assistant", "content": h[1]})
msg_list.append({"role": "user", "content": message})
# Update this line to use send_to_llm_wrapper
response, _ = send_to_llm_wrapper(msg_list)
return history + [[message, response]]
except Exception as e:
print(f"Error in chat_with_llm: {str(e)}")
return history + [[message, f"Error: {str(e)}"]]
def update_chat_context(row_data, index, total, quality, high_quality_tags, low_quality_tags, toxic_tags, other):
context = f"""Current app state:
Row: {index + 1}/{total}
Quality: {quality}
High Quality Tags: {', '.join(high_quality_tags)}
Low Quality Tags: {', '.join(low_quality_tags)}
Toxic Tags: {', '.join(toxic_tags)}
Additional Notes: {other}
Data: {row_data}
"""
return [[None, context]]
async def run_generate_dataset(num_workers, num_generations, output_file_path, llm_provider, dataset):
if loaded_dataset is None:
return "Error: No dataset loaded. Please load a dataset before generating.", ""
generated_data = []
for _ in range(num_generations):
topic_selected = random.choice(TOPICS)
system_message_selected = random.choice(SYSTEM_MESSAGES_VODALUS)
data = await generate_data(topic_selected, PROMPT_1, system_message_selected, output_file_path, llm_provider)
if data:
generated_data.append(json.dumps(data))
# Write the generated data to the output file
with open(output_file_path, 'a') as f:
for entry in generated_data:
f.write(entry + '\n')
return f"Generated {num_generations} entries and saved to {output_file_path}", "\n".join(generated_data[:5]) + "\n..."
def add_topic_row(data):
if isinstance(data, pd.DataFrame):
return pd.concat([data, pd.DataFrame({"Topic": ["New Topic"]})], ignore_index=True)
else:
return data + [["New Topic"]]
def remove_last_topic_row(data):
return data[:-1] if len(data) > 1 else data
def edit_all_topics_func(topics):
topics_list = [topic[0] for topic in topics]
jsonl_rows = "\n".join([json.dumps({"topic": topic}) for topic in topics_list])
return (
gr.update(visible=False),
gr.update(value=jsonl_rows, visible=True),
gr.update(visible=True)
)
def update_topics_from_text(text):
try:
# Try parsing as JSONL
topics_list = [json.loads(line)["topic"] for line in text.split("\n") if line.strip()]
except json.JSONDecodeError:
# If parsing fails, treat as plain text
topics_list = [topic.strip() for topic in text.split("\n") if topic.strip()]
return gr.Dataframe.update(value=[[topic] for topic in topics_list], visible=True), gr.TextArea.update(visible=False)
def update_topics_from_text(text):
try:
# Try parsing as JSONL
topics_list = [json.loads(line)["topic"] for line in text.split("\n") if line.strip()]
except json.JSONDecodeError:
# If parsing fails, treat as plain text
topics_list = [topic.strip() for topic in text.split("\n") if topic.strip()]
return gr.Dataframe.update(value=[[topic] for topic in topics_list], visible=True), gr.TextArea.update(visible=False)
def search_huggingface_datasets(query):
try:
api = HfApi()
datasets = api.list_datasets(search=query, limit=20)
dataset_ids = [dataset.id for dataset in datasets]
return gr.update(choices=dataset_ids, visible=True), ""
except Exception as e:
print(f"Error searching datasets: {str(e)}")
return gr.update(choices=["Error: Could not search datasets"], visible=True), ""
def load_huggingface_dataset(dataset_name, split="train"):
try:
print(f"Attempting to load dataset: {dataset_name}")
# Check if dataset_name is a string
if not isinstance(dataset_name, str):
raise ValueError(f"Expected dataset_name to be a string, but got {type(dataset_name)}")
# Try loading the dataset without specifying a config
full_dataset = load_dataset(dataset_name)
print(f"Dataset loaded. Available splits: {list(full_dataset.keys())}")
# Select the appropriate split
if split in full_dataset:
dataset = full_dataset[split]
print(f"Using specified split: {split}")
else:
available_splits = list(full_dataset.keys())
if available_splits:
dataset = full_dataset[available_splits[0]]
split = available_splits[0]
print(f"Specified split not found. Using first available split: {split}")
else:
raise ValueError("No valid splits found in the dataset")
return dataset, f"Dataset '{dataset_name}' (split: {split}) loaded successfully."
except Exception as e:
error_msg = f"Error loading dataset: {str(e)}"
print(f"Error details: {error_msg}")
# If loading fails, try to get the dataset card
try:
dataset_card = hf_hub_download(repo_id=dataset_name, filename="README.md")
with open(dataset_card, 'r') as f:
card_content = f.read()
return None, f"Dataset couldn't be loaded, but here's the dataset card:\n\n{card_content[:500]}..."
except:
return None, error_msg
# Wrapper function to handle the Gradio interface
def load_dataset_wrapper(dataset_name, split):
if not dataset_name:
return None, "Please enter a dataset name."
dataset, message = load_huggingface_dataset(dataset_name, split)
return dataset, message
def update_field_visibility(provider):
if provider == "local-model":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif provider == "anything-llm":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def get_popular_datasets():
return [
"wikipedia",
"squad",
"glue",
"imdb",
"wmt16",
"common_voice",
"cnn_dailymail",
"amazon_reviews_multi",
"yelp_review_full",
"ag_news"
]
def load_dataset_config_for_ui():
config = load_dataset_config()
return (
config["vodalus_system_message"],
config["prompt_1"],
config["topics"],
config["max_tokens"],
config["temperature"],
config["top_p"],
config["frequency_penalty"],
config["presence_penalty"]
)
css = """
body, #root {
margin: 0;
padding: 0;
width: 100%;
height: 100%;
overflow-x: hidden;
}
.gradio-container {
max-width: 100% !important;
width: 100% !important;
margin: 0 auto !important;
padding: 0 !important;
}
.message-row {
justify-content: space-evenly !important;
}
.message-bubble-border {
border-radius: 6px !important;
}
.message-buttons-bot, .message-buttons-user {
right: 10px !important;
left: auto !important;
bottom: 2px !important;
}
.dark.message-bubble-border {
border-color: #343140 !important;
}
.dark.user {
background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
background: #16141c !important;
}
.tab-nav {
border-bottom: 2px solid #e0e0e0 !important;
}
.tab-nav button {
font-size: 16px !important;
padding: 10px 20px !important;
}
.input-row {
margin-bottom: 20px !important;
}
.button-row {
display: flex !important;
justify-content: space-between !important;
margin-top: 20px !important;
}
#row-editor {
height: 80vh !important;
font-size: 16px !important;
}
.file-upload-row {
height: 50px !important;
margin-bottom: 1rem !important;
}
.file-upload-row > .gr-column {
min-width: 0 !important;
}
.compact-file-upload {
height: 50px !important;
overflow: hidden !important;
}
.compact-file-upload > .file-preview {
min-height: 0 !important;
max-height: 50px !important;
padding: 0 !important;
}
.compact-file-upload > .file-preview > .file-preview-handler {
height: 50px !important;
padding: 0 8px !important;
display: flex !important;
align-items: center !important;
}
.compact-file-upload > .file-preview > .file-preview-handler > .file-preview-title {
white-space: nowrap !important;
overflow: hidden !important;
text-overflow: ellipsis !important;
flex: 1 !important;
}
.compact-file-upload > .file-preview > .file-preview-handler > .file-preview-remove {
padding: 0 !important;
min-width: 24px !important;
width: 24px !important;
height: 24px !important;
}
.compact-button {
height: 50px !important;
min-height: 40px !important;
width: 100% !important;
}
.compact-file-upload > label {
height: 50px !important;
padding: 0 8px !important;
display: flex !important;
align-items: center !important;
justify-content: left !important;
}
"""
demo = gr.Blocks(theme='Ama434/neutral-barlow', css=css)
with demo:
gr.Markdown("# Dataset Editor and Annotation Tool")
config = gr.State(load_annotation_config())
with gr.Row():
with gr.Column(min_width=1000):
with gr.Tab("Dataset Editor"):
with gr.Row(elem_classes="file-upload-row"):
with gr.Column(scale=3, min_width=400):
file_upload = gr.File(label="Upload Dataset File (.txt, .jsonl, or .csv)", elem_classes="compact-file-upload")
with gr.Column(scale=1, min_width=100):
load_button = gr.Button("Load Dataset", elem_classes="compact-button")
with gr.Row():
prev_button = gr.Button("← Previous")
row_index = gr.State(value=0)
total_rows = gr.State(value=0)
current_row_display = gr.Textbox(label="Current Row", interactive=False)
next_button = gr.Button("Next →")
with gr.Row():
with gr.Column(scale=3):
row_editor = gr.TextArea(label="Edit Row", lines=40)
with gr.Column(scale=2):
quality_label = gr.Radio(label="Relevance for Training", choices=[])
tag_components = [gr.CheckboxGroup(label=f"Tag Group {i+1}", choices=[]) for i in range(3)]
other_description = gr.Textbox(label="Additional annotations", lines=3)
# Add the AI Assistant as a dropdown
with gr.Accordion("AI Assistant", open=False):
chatbot = gr.Chatbot(height=300)
msg = gr.Textbox(label="Chat with AI Assistant")
clear = gr.Button("Clear")
with gr.Row():
to_markdown_button = gr.Button("Convert to Markdown")
to_json_button = gr.Button("Convert to JSON")
preview_button = gr.Button("Preview with Metadata")
save_row_button = gr.Button("Save Current Row", variant="primary")
preview_output = gr.TextArea(label="Preview", lines=20, interactive=False)
editor_status = gr.Textbox(label="Editor Status")
with gr.Tab("Annotation Configuration"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Quality Scale")
quality_scale_name = gr.Textbox(label="Scale Name")
quality_scale_description = gr.Textbox(label="Scale Description", lines=2)
with gr.Column(scale=2):
quality_scale = gr.Dataframe(
headers=["Value", "Label"],
datatype=["str", "str"],
label="Quality Scale Options",
interactive=True,
col_count=(2, "fixed"),
row_count=(5, "dynamic"),
height=400,
wrap=True
)
gr.Markdown("### Tag Categories")
tag_categories = gr.Dataframe(
headers=["Name", "Type", "Tags"],
datatype=["str", "str", "str"],
label="Tag Categories",
interactive=True,
col_count=(3, "fixed"),
row_count=(3, "dynamic"),
height=250,
wrap=True
)
with gr.Row():
add_tag_category = gr.Button("Add Category")
remove_tag_category = gr.Button("Remove Last Category")
gr.Markdown("### Free Text Fields")
free_text_fields = gr.Dataframe(
headers=["Name", "Description"],
datatype=["str", "str"],
label="Free Text Fields",
interactive=True,
col_count=(2, "fixed"),
row_count=(2, "dynamic"),
height=300,
wrap=True
)
with gr.Row():
add_free_text_field = gr.Button("Add Field")
remove_free_text_field = gr.Button("Remove Last Field")
with gr.Row():
save_config_btn = gr.Button("Save Configuration", variant="primary")
config_status = gr.Textbox(label="Status", interactive=False)
with gr.Tab("Dataset Configuration"):
with gr.Row():
vodalus_system_message = gr.TextArea(label="System Message for JSONL Dataset", lines=10)
prompt_1 = gr.TextArea(label="Dataset Generation Prompt", lines=10)
gr.Markdown("### Topics")
with gr.Row():
with gr.Column(scale=2):
topics = gr.Dataframe(
headers=["Topic"],
datatype=["str"],
label="Topics",
interactive=True,
col_count=(1, "fixed"),
row_count=(5, "dynamic"),
height=200,
wrap=True
)
with gr.Column(scale=1):
with gr.Row():
add_topic = gr.Button("Add Topic")
remove_topic = gr.Button("Remove Last Topic")
edit_all_topics = gr.Button("Edit All Topics")
all_topics_edit = gr.TextArea(label="Edit All Topics (JSONL or Plain Text)", visible=False, lines=10)
format_info = gr.Markdown("""
Enter topics as JSONL (e.g., {"topic": "Example Topic"}) or plain text (one topic per line).
JSONL format allows for additional metadata if needed.
""", visible=False)
with gr.Row():
save_dataset_config_btn = gr.Button("Save Dataset Configuration", variant="primary")
dataset_config_status = gr.Textbox(label="Status")
# gr.Markdown("### Hugging Face Dataset")
# with gr.Row():
# dataset_search = gr.Textbox(label="Search Datasets")
# search_button = gr.Button("Search")
# dataset_input = gr.Textbox(label="Dataset Name", info="Enter a dataset name or select from search results")
# dataset_results = gr.Radio(label="Search Results", choices=[], visible=False)
# dataset_split = gr.Textbox(label="Dataset Split (optional)", value="train")
# load_dataset_button = gr.Button("Load Selected Dataset")
# dataset_status = gr.Textbox(label="Dataset Status")
# Add a state to store the loaded dataset
# loaded_dataset = gr.State(None)
with gr.Tab("Dataset Generation"):
with gr.Row():
num_workers = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Workers")
num_generations = gr.Number(value=10, label="Number of Generations", precision=0)
with gr.Row():
output_file_path = gr.Textbox(label="Output File Path", value=OUTPUT_FILE_PATH)
start_generation_btn = gr.Button("Start Generation")
generation_status = gr.Textbox(label="Generation Status")
generation_output = gr.TextArea(label="Generation Output", lines=10)
with gr.Tab("LLM Configuration"):
with gr.Row():
provider = gr.Dropdown(choices=["local-model", "anything-llm"], label="LLM Provider")
with gr.Row():
base_url = gr.Textbox(label="Base URL (for local model)", visible=False)
model = gr.Textbox(label="Model (for local model)", visible=False)
with gr.Row():
workspace = gr.Textbox(label="Workspace (for AnythingLLM)", visible=False)
api_key = gr.Textbox(label="API Key (for AnythingLLM)", visible=False)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
max_tokens = gr.Slider(minimum=100, maximum=4096, value=2048, step=1, label="Max Tokens")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.01, label="Temperature")
with gr.Row():
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.01, label="Top P")
frequency_penalty = gr.Slider(minimum=0, maximum=2, value=0.0, step=0.01, label="Frequency Penalty")
presence_penalty = gr.Slider(minimum=0, maximum=2, value=0.0, step=0.01, label="Presence Penalty")
save_llm_config_btn = gr.Button("Save LLM Configuration")
llm_config_status = gr.Textbox(label="LLM Config Status")
with gr.Row():
save_dataset_config_btn = gr.Button("Save Dataset Configuration", variant="primary")
dataset_config_status = gr.Textbox(label="Status")
add_topic.click(
lambda x: x + [["New Topic"]],
inputs=[topics],
outputs=[topics]
)
remove_topic.click(
lambda x: x[:-1] if len(x) > 0 else x,
inputs=[topics],
outputs=[topics]
)
edit_all_topics.click(
edit_all_topics_func,
inputs=[topics],
outputs=[topics, all_topics_edit, format_info]
)
all_topics_edit.submit(
update_topics_from_text,
inputs=[all_topics_edit],
outputs=[topics, all_topics_edit, format_info]
)
load_button.click(
load_dataset,
inputs=[file_upload],
outputs=[row_editor, row_index, total_rows, current_row_display, quality_label, *tag_components, other_description]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
prev_button.click(
navigate_rows,
inputs=[file_upload, row_index, gr.State("prev"), config],
outputs=[row_editor, row_index, total_rows, current_row_display, quality_label, *tag_components, other_description]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
next_button.click(
navigate_rows,
inputs=[file_upload, row_index, gr.State("next"), config],
outputs=[row_editor, row_index, total_rows, current_row_display, quality_label, *tag_components, other_description]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
save_row_button.click(
save_row_with_metadata,
inputs=[file_upload, row_index, row_editor, config, quality_label,
tag_components[0], tag_components[1], tag_components[2], other_description],
outputs=[editor_status]
).then(
lambda: "",
outputs=[preview_output]
)
to_markdown_button.click(
json_to_markdown,
inputs=[row_editor],
outputs=[row_editor]
)
to_json_button.click(
markdown_to_json,
inputs=[row_editor],
outputs=[row_editor]
)
demo.load(
load_config_to_ui,
inputs=[config],
outputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
save_config_btn.click(
save_config_from_ui,
inputs=[quality_scale_name, quality_scale_description, quality_scale, tag_categories, free_text_fields, topics, all_topics_edit],
outputs=[config_status, config]
).then(
update_annotation_ui,
inputs=[config],
outputs=[quality_label, *tag_components, other_description]
)
preview_button.click(
generate_preview,
inputs=[row_editor, quality_label, *tag_components, other_description],
outputs=[preview_output]
)
demo.load(
load_dataset_config,
outputs=[vodalus_system_message, prompt_1, topics, max_tokens, temperature, top_p, frequency_penalty, presence_penalty]
)
save_dataset_config_btn.click(
save_dataset_config,
inputs=[vodalus_system_message, prompt_1, topics, max_tokens, temperature, top_p, frequency_penalty, presence_penalty],
outputs=[dataset_config_status]
)
start_generation_btn.click(
run_generate_dataset,
inputs=[num_workers, num_generations, output_file_path, llm_provider_state],
outputs=[generation_status, generation_output]
)
demo.load(
load_llm_config,
outputs=[provider, base_url, model, workspace, api_key, max_tokens, temperature, top_p, frequency_penalty, presence_penalty]
)
save_llm_config_btn.click(
save_llm_config,
inputs=[provider, base_url, model, workspace, api_key, max_tokens, temperature, top_p, frequency_penalty, presence_penalty],
outputs=[llm_config_status]
)
msg.submit(chat_with_llm, [msg, chatbot], [chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
for button in [load_button, prev_button, next_button]:
button.click(
update_chat_context,
inputs=[row_editor, row_index, total_rows, quality_label, *tag_components, other_description],
outputs=[chatbot]
)
provider.change(
lambda x: x,
inputs=[provider],
outputs=[llm_provider_state]
)
# search_button.click(
# search_huggingface_datasets,
# inputs=[dataset_search],
# outputs=[dataset_results, dataset_input]
# )
# dataset_results.change(
# lambda choice: choice,
# inputs=[dataset_results],
# outputs=[dataset_input]
# )
# load_dataset_button.click(
# load_dataset_wrapper,
# inputs=[dataset_input, dataset_split],
# outputs=[loaded_dataset, dataset_status]
# )
# Modify the start_generation_btn.click to include the loaded dataset
start_generation_btn.click(
run_generate_dataset,
inputs=[num_workers, num_generations, output_file_path, llm_provider_state],
outputs=[generation_status, generation_output]
)
demo.load(
load_dataset_config_for_ui,
outputs=[
vodalus_system_message,
prompt_1,
topics,
max_tokens,
temperature,
top_p,
frequency_penalty,
presence_penalty
]
)
if __name__ == "__main__":
demo.launch(share=True) |