File size: 13,749 Bytes
37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 37c00da ff9b6c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import random
import numpy as np
import streamlit as st
# import all functions from src.backend.chatbot
from src.backend.chatbot import *
def genetic_algorithm_plants(model, demo_lite):
# Define the compatibility matrix
compatibility_matrix = st.session_state.full_mat
# Define the list of plants
plant_list = st.session_state.plant_list
# Define the user-selected plants, number of plant beds, and constraints
user_plants = st.session_state.input_plants_raw
num_plant_beds = st.session_state.n_plant_beds
# 1 <= min_species_per_bed <= max_species_per_bed <= len(user_plants)
min_species_per_bed = st.session_state.min_species
# max_species_per_bed >= floor(length(user_plants)-(min_species_per_bed*num_plant_beds-1) & max_species_per_bed <= len(user_plants)
max_species_per_bed = st.session_state.max_species
# Genetic Algorithm parameters
population_size = st.session_state.population_size
num_generations = st.session_state.num_generations
tournament_size = st.session_state.tournament_size
crossover_rate = st.session_state.crossover_rate
mutation_rate = st.session_state.mutation_rate
seed_population_rate = st.session_state.seed_population_rate
def generate_initial_population(model, demo_lite):
population = []
# Add seed groupings to the population, validated and replaced as necessary
num_seeds = int(
population_size * st.session_state.seed_population_rate
) # 10% of the population as seeds
# we generate just one seed grouping for this beta language model suggestion feature
seed_grouping = get_language_model_suggestions(model, demo_lite)
if seed_grouping != "no response yet":
valid_seed_grouping = validate_and_replace(seed_grouping)
population.append(valid_seed_grouping)
# Fill the rest of the population with random groupings, also validated and replaced
while len(population) < population_size:
random_grouping = generate_random_grouping()
valid_random_grouping = validate_and_replace(random_grouping)
population.append(valid_random_grouping)
return population
def generate_random_grouping():
random.shuffle(user_plants)
remaining_plants = user_plants.copy()
grouping = []
total_plants = len(user_plants)
plants_per_bed = total_plants // num_plant_beds
extra_plants = total_plants % num_plant_beds
for bed_index in range(num_plant_beds):
if bed_index < extra_plants:
# Distribute extra plants among the first few beds
num_species_in_bed = plants_per_bed + 1
else:
num_species_in_bed = plants_per_bed
# Ensure the bed size is within the min and max constraints
num_species_in_bed = max(
min_species_per_bed, min(num_species_in_bed, max_species_per_bed)
)
bed = remaining_plants[:num_species_in_bed]
remaining_plants = remaining_plants[num_species_in_bed:]
grouping.append(bed)
return grouping
# Perform crossover between two parents, preserving at least one occurrence of each plant
def crossover(parent1, parent2):
if random.random() < crossover_rate:
crossover_point = random.randint(1, num_plant_beds - 1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
# Ensure each plant appears at least once in the offspring
for plant in user_plants:
if all(plant not in bed for bed in child1):
# Find a bed with fewer species and add the missing plant
min_bed_index = min(
range(len(child1)), key=lambda i: len(child1[i])
)
child1[min_bed_index].append(plant)
if all(plant not in bed for bed in child2):
# Find a bed with fewer species and add the missing plant
min_bed_index = min(
range(len(child2)), key=lambda i: len(child2[i])
)
child2[min_bed_index].append(plant)
return child1, child2
else:
return parent1, parent2
# Perform mutation on an individual, ensuring no bed exceeds the maximum species constraint
def mutate(individual):
if random.random() < mutation_rate:
mutated_bed = random.randint(0, num_plant_beds - 1)
species_in_bed = individual[mutated_bed]
# Remove excess species if there are more than the maximum constraint
if len(species_in_bed) > max_species_per_bed:
species_in_bed = random.sample(species_in_bed, max_species_per_bed)
# Add missing plants by performing swaps between current species and missing plants
missing_plants = [
plant for plant in user_plants if plant not in species_in_bed
]
num_missing_plants = min(
len(missing_plants), max_species_per_bed - len(species_in_bed)
)
for _ in range(num_missing_plants):
swap_species = random.choice(missing_plants)
missing_plants.remove(swap_species)
species_in_bed.append(swap_species)
species_in_bed.remove(random.choice(species_in_bed))
individual[mutated_bed] = species_in_bed
return individual
# Calculate the fitness score of the grouping
def calculate_fitness(grouping):
positive_reward_factor = (
1000 # Adjust this to increase the reward for compatible species
)
negative_penalty_factor = (
2000 # Adjust this to increase the penalty for incompatible species
)
# Define penalties for not meeting constraints
penalty_for_exceeding_max = 500 # Adjust as needed
penalty_for_not_meeting_min = 500 # Adjust as needed
penalty_for_not_having_all_plants = 1000 # Adjust as needed
score = 0
# Iterate over each plant bed
for bed in grouping:
for i in range(len(bed)):
for j in range(i + 1, len(bed)):
# get the plant name
species1_name = bed[i]
species2_name = bed[j]
species1_index = plant_list.index(species1_name)
species2_index = plant_list.index(species2_name)
# Compatibility score between two species in the same bed
compatibility_score = compatibility_matrix[species1_index][
species2_index
]
if compatibility_score > 0:
# Positive reward for compatible species
score += compatibility_score * positive_reward_factor
elif compatibility_score < 0:
# Negative penalty for incompatible species
score += compatibility_score * negative_penalty_factor
# Apply penalties for not meeting constraints
if len(bed) > max_species_per_bed:
score -= penalty_for_exceeding_max
if len(bed) < min_species_per_bed:
score -= penalty_for_not_meeting_min
if len(set(plant for bed in grouping for plant in bed)) < len(user_plants):
score -= penalty_for_not_having_all_plants
return score
# Perform tournament selection
def tournament_selection(population):
selected = []
for _ in range(population_size):
participants = random.sample(population, tournament_size)
winner = max(participants, key=calculate_fitness)
selected.append(winner)
return selected
# Perform replacement of the population with the offspring, ensuring maximum species constraint is met
def replacement(population, offspring):
sorted_population = sorted(population, key=calculate_fitness, reverse=True)
sorted_offspring = sorted(offspring, key=calculate_fitness, reverse=True)
# Adjust the offspring to meet the maximum species constraint
adjusted_offspring = []
for individual in sorted_offspring:
for bed_idx in range(num_plant_beds):
species_in_bed = individual[bed_idx]
if len(species_in_bed) > max_species_per_bed:
species_in_bed = random.sample(species_in_bed, max_species_per_bed)
individual[bed_idx] = species_in_bed
adjusted_offspring.append(individual)
return (
sorted_population[: population_size - len(adjusted_offspring)]
+ adjusted_offspring
)
# Genetic Algorithm main function
def genetic_algorithm(model, demo_lite):
population = generate_initial_population(model, demo_lite)
for generation in range(num_generations):
print(f"Generation {generation + 1}")
selected_population = tournament_selection(population)
offspring = []
for _ in range(population_size // 2):
parent1 = random.choice(selected_population)
parent2 = random.choice(selected_population)
child1, child2 = crossover(parent1, parent2)
child1 = mutate(child1)
child2 = mutate(child2)
offspring.extend([child1, child2])
population = replacement(population, offspring)
# Validate and replace any missing plants in the new population
population = [validate_and_replace(grouping) for grouping in population]
best_grouping = max(population, key=calculate_fitness)
best_grouping = validate_and_replace(best_grouping)
best_fitness = calculate_fitness(best_grouping)
print(f"Best Grouping: {best_grouping}")
print(f"Fitness Score: {best_fitness}")
st.session_state.best_grouping = best_grouping
st.session_state.best_fitness = best_fitness
# st.write(f"Best Grouping: {best_grouping}")
# st.write(f"Fitness Score: {best_fitness}")
return best_grouping
# def validate_and_replace(grouping):
# print("Grouping structure before validation:", grouping)
# all_plants = set(user_plants)
# for bed in grouping:
# all_plants -= set(bed)
# # Replace missing plants
# for missing_plant in all_plants:
# replaced = False
# for bed in grouping:
# if len(set(bed)) != len(bed): # Check for duplicates
# for i, plant in enumerate(bed):
# if bed.count(plant) > 1: # Found a duplicate
# bed[i] = missing_plant
# replaced = True
# break
# if replaced:
# break
# # If no duplicates were found, replace a random plant
# if not replaced:
# random_bed = random.choice(grouping)
# random_bed[random.randint(0, len(random_bed) - 1)] = missing_plant
# return grouping
############
############ experimental
def adjust_grouping(grouping):
# Determine the plants that are missing in the grouping
plants_in_grouping = set(plant for bed in grouping for plant in bed)
missing_plants = set(user_plants) - plants_in_grouping
for missing_plant in missing_plants:
# Find a bed that can accommodate the missing plant without exceeding max_species_per_bed
suitable_bed = next(
(bed for bed in grouping if len(bed) < max_species_per_bed), None
)
if suitable_bed is not None:
suitable_bed.append(missing_plant)
else:
# If no suitable bed is found, replace a random plant in a random bed
random_bed = random.choice(grouping)
random_bed[random.randint(0, len(random_bed) - 1)] = missing_plant
# Ensure min_species_per_bed and max_species_per_bed constraints
for bed in grouping:
while len(bed) < min_species_per_bed:
additional_plant = random.choice(
[plant for plant in user_plants if plant not in bed]
)
bed.append(additional_plant)
while len(bed) > max_species_per_bed:
bed.remove(random.choice(bed))
return grouping
def validate_and_replace(grouping):
best_grouping = None
best_fitness = float("-inf")
for _ in range(5): # Generate 5 different configurations
temp_grouping = [bed.copy() for bed in grouping]
temp_grouping = adjust_grouping(temp_grouping)
current_fitness = calculate_fitness(temp_grouping)
if current_fitness > best_fitness:
best_fitness = current_fitness
best_grouping = temp_grouping
return best_grouping
############
def get_language_model_suggestions(model, demo_lite):
# This returns a list of seed groupings based on the compatibility matrix
st.session_state.seed_groupings = get_seed_groupings_from_LLM(model, demo_lite)
return st.session_state.seed_groupings
# Run the genetic algorithm
best_grouping = genetic_algorithm(model, demo_lite)
return best_grouping
|