Spaces:
Running
Running
File size: 28,427 Bytes
5580f46 d055fb3 f6b99ca 9497fc8 31bd9a2 9497fc8 d055fb3 31bd9a2 c95a856 36ae3fb 2ce979c d055fb3 f6b99ca eefa003 6ab0b47 78f63db 5580f46 4d9f591 5580f46 78f63db 0bb4279 eefa003 78f63db eefa003 5580f46 2d42f7a 0d67078 f6b99ca 2ce979c f6b99ca 0bb4279 5580f46 2ce979c 5580f46 78f63db 0d67078 5580f46 0d67078 9a0917a 5580f46 0d67078 83c1cfa 0d67078 9497fc8 0bb4279 eefa003 ddbdc31 0bb4279 eefa003 0d67078 0bb4279 f6b99ca 0bb4279 f6b99ca 2ce979c 6ab0b47 f6b99ca 5580f46 6ab0b47 5580f46 f6b99ca 0bb4279 2ce979c d055fb3 0bb4279 2ce979c 31bd9a2 d055fb3 2d42f7a 1ed1b11 0bb4279 d055fb3 0bb4279 c95a856 0bb4279 31bd9a2 0bb4279 2ce979c 0d67078 d055fb3 2ce979c 78f63db 9e185d2 0bb4279 2ce979c 0bb4279 2ce979c 0bb4279 d055fb3 2d42f7a 0bb4279 2ce979c d055fb3 6ab0b47 0bb4279 9a0917a f6b99ca 0bb4279 f6b99ca 2ce979c f6b99ca 6ab0b47 f6b99ca 2ce979c 0bb4279 9e185d2 0d67078 0bb4279 9e185d2 0bb4279 0d67078 0bb4279 2ce979c 0bb4279 2ce979c 0bb4279 2ce979c 0bb4279 5580f46 0bb4279 5580f46 0bb4279 5580f46 0bb4279 0d67078 0bb4279 0d67078 0bb4279 5580f46 0bb4279 0d67078 0bb4279 9e185d2 0bb4279 31bd9a2 2ce979c 0bb4279 f6b99ca 2ce979c f6b99ca 2ce979c f6b99ca 6ab0b47 f6b99ca 2ce979c f6b99ca 2ce979c 0bb4279 0d67078 2ce979c 0d67078 36ae3fb 0bb4279 0d67078 0bb4279 f6b99ca 0bb4279 96ae1f0 0d67078 f6b99ca 9497fc8 1ed1b11 0d67078 faae316 1ed1b11 0d67078 31bd9a2 ddbdc31 d055fb3 f6b99ca d055fb3 f6b99ca b9615bf 28d7df1 f6b99ca d055fb3 ddbdc31 d055fb3 ddbdc31 d055fb3 f6b99ca ddbdc31 0bb4279 f6b99ca 0bb4279 f6b99ca 0d67078 31bd9a2 0bb4279 f6b99ca ddbdc31 f6b99ca ddbdc31 f6b99ca 0d67078 0bb4279 0d67078 f6b99ca 0d67078 31bd9a2 2d42f7a 2ce979c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
import random
from collections.abc import Mapping
from uuid import uuid4
from openai import OpenAI
import gradio as gr
import base64
import mimetypes
import copy
import os
# Workaround for PyCharm debugger + uvicorn compatibility error:
# TypeError: _patch_asyncio.<locals>.run() got an unexpected keyword argument 'loop_factory'
DEBUG = False
if DEBUG is True: # or sys.gettrace() is not None: # Debugger is attached
import asyncio
_original_run = asyncio.run
def _patched_run(main, **kwargs):
kwargs.pop('loop_factory', None) # Remove unsupported arg
return _original_run(main, **kwargs)
asyncio.run = _patched_run
from theme import apriel
from utils import COMMUNITY_POSTFIX_URL, get_model_config, check_format, models_config, \
logged_event_handler, DEBUG_MODE, DEBUG_MODEL, log_debug, log_info, log_error, log_warning
from log_chat import log_chat
DEFAULT_MODEL_TEMPERATURE = 0.6
BUTTON_WIDTH = 160
DEFAULT_OPT_OUT_VALUE = DEBUG_MODE
# If DEBUG_MODEL is True, use an alternative model (without reasoning) for testing
DEFAULT_MODEL_NAME = "Apriel-1.5-15B-thinker" if not DEBUG_MODEL else "Apriel-1.5-15B-thinker" # "Apriel-5b"
BUTTON_ENABLED = gr.update(interactive=True)
BUTTON_DISABLED = gr.update(interactive=False)
INPUT_ENABLED = gr.update(interactive=True)
INPUT_DISABLED = gr.update(interactive=False)
DROPDOWN_ENABLED = gr.update(interactive=True)
DROPDOWN_DISABLED = gr.update(interactive=False)
SEND_BUTTON_ENABLED = gr.update(interactive=True, visible=True)
SEND_BUTTON_DISABLED = gr.update(interactive=True, visible=False)
STOP_BUTTON_ENABLED = gr.update(interactive=True, visible=True)
STOP_BUTTON_DISABLED = gr.update(interactive=True, visible=False)
chat_start_count = 0
model_config = {}
openai_client = None
USE_RANDOM_ENDPOINT = False
endpoint_rotation_count = 0
# Maximum number of image messages allowed per request
MAX_IMAGE_MESSAGES = 5
def app_loaded(state, request: gr.Request):
message_html = setup_model(DEFAULT_MODEL_NAME, intial=False)
state['session'] = request.session_hash if request else uuid4().hex
log_debug(f"app_loaded() --> Session: {state['session']}")
return state, message_html
def update_model_and_clear_chat(model_name):
actual_model_name = model_name.replace("Model: ", "")
desc = setup_model(actual_model_name)
return desc, []
def setup_model(model_key, intial=False):
global model_config, openai_client, endpoint_rotation_count
model_config = get_model_config(model_key)
log_debug(f"update_model() --> Model config: {model_config}")
url_list = (model_config.get('VLLM_API_URL_LIST') or "").split(",")
if USE_RANDOM_ENDPOINT:
base_url = random.choice(url_list) if len(url_list) > 0 else model_config.get('VLLM_API_URL')
else:
base_url = url_list[endpoint_rotation_count % len(url_list)]
endpoint_rotation_count += 1
openai_client = OpenAI(
api_key=model_config.get('AUTH_TOKEN'),
base_url=base_url
)
model_config['base_url'] = base_url
log_debug(f"Switched to model {model_key} using endpoint {base_url}")
_model_hf_name = model_config.get("MODEL_HF_URL").split('https://huggingface.co/')[1]
_link = f"<a href='{model_config.get('MODEL_HF_URL')}{COMMUNITY_POSTFIX_URL}' target='_blank'>{_model_hf_name}</a>"
_description = f"We'd love to hear your thoughts on the model. Click here to provide feedback - {_link}"
if intial:
return
else:
return _description
def chat_started():
# outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn
return (DROPDOWN_DISABLED, gr.update(value="", interactive=False),
SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED)
def chat_finished():
# outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn
return DROPDOWN_ENABLED, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED
def stop_chat(state):
state["stop_flag"] = True
gr.Info("Chat stopped")
return state
def toggle_opt_out(state, checkbox):
state["opt_out"] = checkbox
return state
def run_chat_inference(history, message, state):
global chat_start_count
state["is_streaming"] = True
state["stop_flag"] = False
error = None
model_name = model_config.get('MODEL_NAME')
temperature = model_config.get('TEMPERATURE', DEFAULT_MODEL_TEMPERATURE)
# Reinitialize the OpenAI client with a random endpoint from the list
setup_model(model_config.get('MODEL_KEY'))
log_info(f"Using model {model_name} (temperature: {temperature}) with endpoint {model_config.get('base_url')}")
if len(history) == 0:
state["chat_id"] = uuid4().hex
if openai_client is None:
log_info("Client UI is stale, letting user know to refresh the page")
gr.Warning("Client UI is stale, please refresh the page")
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
# files will be the newly added files from the user
files = []
# outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, session_state
log_debug(f"{'-' * 80}")
log_debug(f"chat_fn() --> Message: {message}")
log_debug(f"chat_fn() --> History: {history}")
# We have multimodal input in this case
if isinstance(message, Mapping):
files = message.get("files") or []
message = message.get("text") or ""
log_debug(f"chat_fn() --> Message (text only): {message}")
log_debug(f"chat_fn() --> Files: {files}")
# Validate that any uploaded files are images
if len(files) > 0:
invalid_files = []
for path in files:
try:
mime, _ = mimetypes.guess_type(path)
mime = mime or ""
if not mime.startswith("image/"):
invalid_files.append((os.path.basename(path), mime or "unknown"))
except Exception as e:
log_error(f"Failed to inspect file '{path}': {e}")
invalid_files.append((os.path.basename(path), "unknown"))
if invalid_files:
msg = "Only image files are allowed. Invalid uploads: " + \
", ".join([f"{p} (type: {m})" for p, m in invalid_files])
log_warning(msg)
gr.Warning(msg)
yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
# Enforce maximum number of files/images per request
if len(files) > MAX_IMAGE_MESSAGES:
gr.Warning(f"Too many images provided; keeping only the first {MAX_IMAGE_MESSAGES} file(s).")
files = files[:MAX_IMAGE_MESSAGES]
try:
# Check if the message is empty
if not message.strip() and len(files) == 0:
gr.Info("Please enter a message before sending")
yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
chat_start_count = chat_start_count + 1
user_messages_count = sum(1 for item in history if isinstance(item, dict) and item.get("role") == "user"
and isinstance(item.get("content"), str))
log_info(f"chat_start_count: {chat_start_count}, turns: {user_messages_count + 1}, model: {model_name}")
is_reasoning = model_config.get("REASONING")
# Remove any assistant messages with metadata from history for multiple turns
log_debug(f"Initial History: {history}")
check_format(history, "messages")
# Build UI history: add text (if any) and per-file image placeholders {"path": ...}
# Build API parts separately later to avoid Gradio issues with arrays in content
if len(files) == 0:
history.append({"role": "user", "content": message})
else:
if message.strip():
history.append({"role": "user", "content": message})
for path in files:
history.append({"role": "user", "content": {"path": path}})
log_debug(f"History with user message: {history}")
check_format(history, "messages")
# Create the streaming response
try:
history_no_thoughts = [item for item in history if
not (isinstance(item, dict) and
item.get("role") == "assistant" and
isinstance(item.get("metadata"), dict) and
item.get("metadata", {}).get("title") is not None)]
log_debug(f"Updated History: {history_no_thoughts}")
check_format(history_no_thoughts, "messages")
log_debug(f"history_no_thoughts with user message: {history_no_thoughts}")
# Build API-specific messages:
# - Convert any UI image placeholders {"path": ...} to image_url parts
# - Convert any user string content that is a valid file path to image_url parts
# - Coalesce consecutive image paths into a single image-only user message
api_messages = []
image_parts_buffer = []
def flush_image_buffer():
if len(image_parts_buffer) > 0:
api_messages.append({"role": "user", "content": list(image_parts_buffer)})
image_parts_buffer.clear()
def to_image_part(path: str):
try:
mime, _ = mimetypes.guess_type(path)
mime = mime or "application/octet-stream"
with open(path, "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
data_url = f"data:{mime};base64,{b64}"
return {"type": "image_url", "image_url": {"url": data_url}}
except Exception as e:
log_error(f"Failed to load file '{path}': {e}")
return None
def normalize_msg(msg):
# Returns (role, content, as_dict) where as_dict is a message dict suitable to pass through when unmodified
if isinstance(msg, dict):
return msg.get("role"), msg.get("content"), msg
# Gradio ChatMessage-like object
role = getattr(msg, "role", None)
content = getattr(msg, "content", None)
if role is not None:
return role, content, {"role": role, "content": content}
return None, None, msg
for m in copy.deepcopy(history_no_thoughts):
role, content, as_dict = normalize_msg(m)
# Unknown structure: pass through
if role is None:
flush_image_buffer()
api_messages.append(as_dict)
continue
# Assistant messages pass through as-is
if role == "assistant":
flush_image_buffer()
api_messages.append(as_dict)
continue
# Only user messages have potential image paths to convert
if role == "user":
# Case A: {'path': ...}
if isinstance(content, dict) and isinstance(content.get("path"), str):
p = content["path"]
part = to_image_part(p) if os.path.isfile(p) else None
if part:
image_parts_buffer.append(part)
else:
flush_image_buffer()
api_messages.append({"role": "user", "content": str(content)})
continue
# Case B: string or tuple content that may be a file path
if isinstance(content, str):
if os.path.isfile(content):
part = to_image_part(content)
if part:
image_parts_buffer.append(part)
continue
# Not a file path: pass through as text
flush_image_buffer()
api_messages.append({"role": "user", "content": content})
continue
if isinstance(content, tuple):
# Common case: a single-element tuple containing a path string
tuple_items = list(content)
tmp_parts = []
text_accum = []
for item in tuple_items:
if isinstance(item, str) and os.path.isfile(item):
part = to_image_part(item)
if part:
tmp_parts.append(part)
else:
text_accum.append(item)
else:
text_accum.append(str(item))
if tmp_parts:
flush_image_buffer()
api_messages.append({"role": "user", "content": tmp_parts})
if not text_accum:
continue
if text_accum:
flush_image_buffer()
api_messages.append({"role": "user", "content": "\n".join(text_accum)})
continue
# Case C: list content
if isinstance(content, list):
# If it's already a list of parts, let it pass through
all_dicts = all(isinstance(c, dict) for c in content)
if all_dicts:
flush_image_buffer()
api_messages.append({"role": "user", "content": content})
continue
# It might be a list of strings (paths/text). Convert string paths to image parts, others to text parts
tmp_parts = []
text_accum = []
def flush_text_accum():
if text_accum:
api_messages.append({"role": "user", "content": "\n".join(text_accum)})
text_accum.clear()
for item in content:
if isinstance(item, str) and os.path.isfile(item):
part = to_image_part(item)
if part:
tmp_parts.append(part)
else:
text_accum.append(item)
else:
text_accum.append(str(item))
if tmp_parts:
flush_image_buffer()
api_messages.append({"role": "user", "content": tmp_parts})
if text_accum:
flush_text_accum()
continue
# Fallback: pass through
flush_image_buffer()
api_messages.append(as_dict)
continue
# Other roles
flush_image_buffer()
api_messages.append(as_dict)
# Flush any trailing images
flush_image_buffer()
log_debug(f"sending api_messages to model {model_name}: {api_messages}")
# Ensure we don't send too many images (count only messages whose content is a list of parts)
image_msg_indices = [
i for i, msg in enumerate(api_messages)
if isinstance(msg, dict) and isinstance(msg.get('content'), list)
]
image_count = len(image_msg_indices)
if image_count > MAX_IMAGE_MESSAGES:
# Remove oldest image messages until we have MAX_IMAGE_MESSAGES or fewer
to_remove = image_count - MAX_IMAGE_MESSAGES
removed = 0
for idx in image_msg_indices:
if removed >= to_remove:
break
# Pop considering prior removals shift indices
api_messages.pop(idx - removed)
removed += 1
gr.Warning(f"Too many images provided; keeping the latest {MAX_IMAGE_MESSAGES} and dropped {removed} older image message(s).")
stream = openai_client.chat.completions.create(
model=model_name,
messages=api_messages,
temperature=temperature,
stream=True
)
except Exception as e:
log_error(f"Error:\n\t{e}\n\tInference failed for model {model_name} and endpoint {model_config['base_url']}")
error = str(e)
yield ([{"role": "assistant",
"content": "😔 The model is unavailable at the moment. Please try again later."}],
INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state)
if state["opt_out"] is not True:
log_chat(chat_id=state["chat_id"],
session_id=state["session"],
model_name=model_name,
prompt=message,
history=history,
info={"is_reasoning": model_config.get("REASONING"), "temperature": temperature,
"stopped": True, "error": str(e)},
)
else:
log_info(f"User opted out of chat history. Not logging chat. model: {model_name}")
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
if is_reasoning:
history.append(gr.ChatMessage(
role="assistant",
content="Thinking...",
metadata={"title": "🧠 Thought"}
))
log_debug(f"History added thinking: {history}")
check_format(history, "messages")
else:
history.append(gr.ChatMessage(
role="assistant",
content="",
))
log_debug(f"History added empty assistant: {history}")
check_format(history, "messages")
output = ""
completion_started = False
for chunk in stream:
if state["stop_flag"]:
log_debug(f"chat_fn() --> Stopping streaming...")
break # Exit the loop if the stop flag is set
# Extract the new content from the delta field
content = getattr(chunk.choices[0].delta, "content", "") or ""
reasoning_content = getattr(chunk.choices[0].delta, "reasoning_content", "") or ""
output += reasoning_content + content
if is_reasoning:
parts = output.split("[BEGIN FINAL RESPONSE]")
if len(parts) > 1:
if parts[1].endswith("[END FINAL RESPONSE]"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]", "")
if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "")
if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>\n"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>\n", "")
if parts[1].endswith("<|end|>"):
parts[1] = parts[1].replace("<|end|>", "")
if parts[1].endswith("<|end|>\n"):
parts[1] = parts[1].replace("<|end|>\n", "")
history[-1 if not completion_started else -2] = gr.ChatMessage(
role="assistant",
content=parts[0],
metadata={"title": "🧠 Thought"}
)
if completion_started:
history[-1] = gr.ChatMessage(
role="assistant",
content=parts[1]
)
elif len(parts) > 1 and not completion_started:
completion_started = True
history.append(gr.ChatMessage(
role="assistant",
content=parts[1]
))
else:
if output.endswith("<|end|>"):
output = output.replace("<|end|>", "")
if output.endswith("<|end|>\n"):
output = output.replace("<|end|>\n", "")
history[-1] = gr.ChatMessage(
role="assistant",
content=output
)
# log_message(f"Yielding messages: {history}")
yield history, INPUT_DISABLED, SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, state
log_debug(f"Final History: {history}")
check_format(history, "messages")
yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
finally:
if error is None:
log_debug(f"chat_fn() --> Finished streaming. {chat_start_count} chats started.")
if state["opt_out"] is not True:
log_chat(chat_id=state["chat_id"],
session_id=state["session"],
model_name=model_name,
prompt=message,
history=history,
info={"is_reasoning": model_config.get("REASONING"), "temperature": temperature,
"stopped": state["stop_flag"]},
)
else:
log_info(f"User opted out of chat history. Not logging chat. model: {model_name}")
state["is_streaming"] = False
state["stop_flag"] = False
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
log_info(f"Gradio version: {gr.__version__}")
title = None
description = None
theme = apriel
with open('styles.css', 'r') as f:
custom_css = f.read()
with gr.Blocks(theme=theme, css=custom_css) as demo:
session_state = gr.State(value={
"is_streaming": False,
"stop_flag": False,
"chat_id": None,
"session": None,
"opt_out": DEFAULT_OPT_OUT_VALUE,
}) # Store session state as a dictionary
gr.HTML(f"""
<style>
@media (min-width: 1024px) {{
.send-button-container, .clear-button-container {{
max-width: {BUTTON_WIDTH}px;
}}
}}
</style>
""", elem_classes="css-styles")
with gr.Row(variant="compact", elem_classes=["responsive-row", "no-padding"], ):
with gr.Column():
gr.Markdown(
"""
<span class="banner-message-text">ℹ️ This app has been updated to use the recommended temperature of 0.6. We had set it to 0.8 earlier and expect 0.6 to be better. Please provide feedback using the model link.</span>
"""
, elem_classes="banner-message"
)
with gr.Row(variant="panel", elem_classes="responsive-row"):
with gr.Column(scale=1, min_width=400, elem_classes="model-dropdown-container"):
model_dropdown = gr.Dropdown(
choices=[f"Model: {model}" for model in models_config.keys()],
value=f"Model: {DEFAULT_MODEL_NAME}",
label=None,
interactive=True,
container=False,
scale=0,
min_width=400
)
with gr.Column(scale=4, min_width=0):
feedback_message_html = gr.HTML(description, elem_classes="model-message")
chatbot = gr.Chatbot(
type="messages",
height="calc(100svh - 320px)",
max_height="calc(100svh - 320px)",
elem_classes="chatbot",
)
with gr.Row():
with gr.Column(scale=10, min_width=400, elem_classes="user-input-container"):
with gr.Row():
user_input = gr.MultimodalTextbox(
interactive=True,
container=False,
file_count="multiple",
placeholder="Type your message here and press Enter or upload file...",
show_label=False,
sources=["upload"],
max_plain_text_length=100000,
max_lines=10
)
# Original text-only input
# user_input = gr.Textbox(
# show_label=False,
# placeholder="Type your message here and press Enter",
# container=False
# )
with gr.Column(scale=1, min_width=BUTTON_WIDTH * 2 + 20):
with gr.Row():
with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="send-button-container"):
send_btn = gr.Button("Send", variant="primary", elem_classes="control-button")
stop_btn = gr.Button("Stop", variant="cancel", elem_classes="control-button", visible=False)
with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="clear-button-container"):
clear_btn = gr.ClearButton(chatbot, value="New Chat", variant="secondary", elem_classes="control-button")
with gr.Row():
with gr.Column(min_width=400, elem_classes="opt-out-container"):
with gr.Row():
gr.HTML(
"We may use your chats to improve our AI. You may opt out if you don’t want your conversations saved.",
elem_classes="opt-out-message")
with gr.Row():
opt_out_checkbox = gr.Checkbox(
label="Don’t save my chat history for improvements or training",
value=DEFAULT_OPT_OUT_VALUE,
elem_classes="opt-out-checkbox",
interactive=True,
container=False
)
gr.on(
triggers=[send_btn.click, user_input.submit],
fn=run_chat_inference, # this generator streams results. do not use logged_event_handler wrapper
inputs=[chatbot, user_input, session_state],
outputs=[chatbot, user_input, send_btn, stop_btn, clear_btn, session_state],
concurrency_limit=4,
api_name=False
).then(
fn=chat_finished, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn], queue=False)
# In parallel, disable or update the UI controls
gr.on(
triggers=[send_btn.click, user_input.submit],
fn=chat_started,
inputs=None,
outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn],
queue=False,
show_progress='hidden',
api_name=False
)
stop_btn.click(
fn=stop_chat,
inputs=[session_state],
outputs=[session_state],
api_name=False
)
opt_out_checkbox.change(fn=toggle_opt_out, inputs=[session_state, opt_out_checkbox], outputs=[session_state])
# Ensure the model is reset to default on page reload
demo.load(
fn=logged_event_handler(
log_msg="Browser session started",
event_handler=app_loaded
),
inputs=[session_state],
outputs=[session_state, feedback_message_html],
queue=True,
api_name=False
)
model_dropdown.change(
fn=update_model_and_clear_chat,
inputs=[model_dropdown],
outputs=[feedback_message_html, chatbot],
api_name=False
)
demo.queue(default_concurrency_limit=2).launch(ssr_mode=False, show_api=False, max_file_size="10mb")
log_info("Gradio app launched")
|