File size: 7,785 Bytes
92d14a2
f1c6a3d
 
97f07be
f1c6a3d
e01f7c2
97f07be
f1c6a3d
92d14a2
 
 
 
97f07be
92d14a2
 
 
 
 
730f5a5
 
92d14a2
730f5a5
 
92d14a2
 
 
 
 
730f5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d14a2
 
 
 
 
 
 
 
730f5a5
 
92d14a2
 
 
730f5a5
 
92d14a2
 
 
730f5a5
92d14a2
 
 
730f5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d14a2
730f5a5
 
 
 
 
 
 
 
 
 
 
 
af9c1e6
92d14a2
 
730f5a5
92d14a2
 
 
 
 
 
 
679611d
 
92d14a2
 
 
 
730f5a5
 
92d14a2
af9c1e6
92d14a2
 
 
 
 
 
 
 
 
 
 
 
 
730f5a5
 
 
 
 
 
 
 
92d14a2
 
 
 
 
730f5a5
92d14a2
730f5a5
 
 
92d14a2
 
 
 
 
 
 
 
 
 
 
 
 
730f5a5
 
 
 
92d14a2
af9c1e6
92d14a2
78d19ee
 
 
 
92d14a2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

import os
import sys
from env import config_env


config_env()


import gradio as gr
from huggingface_hub import snapshot_download
import cv2 
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference_sam import segmentation_sam
from explanations import explain
from inference_resnet import get_triplet_model
import pathlib
import tensorflow as tf
from closest_sample import get_images

if not os.path.exists('images'):
    REPO_ID='Serrelab/image_examples_gradio'
    snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images')

def get_model(model_name):
   
        
    if model_name=='Mummified 170':
        n_classes = 170
        model = get_triplet_model(input_shape = (600, 600, 3),
                        embedding_units = 256,
                        embedding_depth = 2,
                        backbone_class=tf.keras.applications.ResNet50V2,
                        nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
        model.load_weights('model_classification/mummified-170.h5')
    elif model_name=='Rock 170':
        n_classes = 171
        model = get_triplet_model(input_shape = (600, 600, 3),
                        embedding_units = 256,
                        embedding_depth = 2,
                        backbone_class=tf.keras.applications.ResNet50V2,
                        nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
        model.load_weights('model_classification/rock-170.h5')
    else:
        return 'Error' 
    return model,n_classes

def segment_image(input_image):
    img = segmentation_sam(input_image)
    return img

def classify_image(input_image, model_name):
    if 'Rock 170' ==model_name:
        from inference_resnet import inference_resnet_finer
        model,n_classes= get_model(model_name)
        result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Mummified 170' ==model_name:
        from inference_resnet import inference_resnet_finer
        model, n_classes= get_model(model_name)
        result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
        return result 
    if 'Fossils 19' ==model_name:
        from inference_beit import inference_dino
        model,n_classes = get_model(model_name)
        return inference_dino(input_image,model_name)
    return None

def get_embeddings(input_image,model_name):
    if 'Rock 170' ==model_name:
        from inference_resnet import inference_resnet_embedding
        model,n_classes= get_model(model_name)
        result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
        return result 
    elif 'Mummified 170' ==model_name:
        from inference_resnet import inference_resnet_embedding
        model, n_classes= get_model(model_name)
        result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
        return result 
    if 'Fossils 19' ==model_name:
        from inference_beit import inference_dino
        model,n_classes = get_model(model_name)
        return inference_dino(input_image,model_name)
    return None
    

def find_closest(input_image,model_name):
    embedding = get_embeddings(input_image,model_name)
    paths = get_images(embedding)
    return paths

def explain_image(input_image,model_name):
    model,n_classes= get_model(model_name)
    saliency, integrated, smoothgrad = explain(model,input_image,n_classes=n_classes)
    #original =  saliency + integrated + smoothgrad 
    print('done')
    return saliency, integrated, smoothgrad,
    
#minimalist theme
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
    
    with gr.Tab(" Florrissant Fossils"):
    
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input")
                classify_image_button = gr.Button("Classify Image")
            
            with gr.Column():
                #segmented_image = gr.outputs.Image(label="SAM output",type='numpy')
                segmented_image=gr.Image(label="Segmented Image", type='numpy')
                segment_button = gr.Button("Segment Image")
                #classify_segmented_button = gr.Button("Classify Segmented Image")
                
            with gr.Column():
                model_name = gr.Dropdown(
                    ["Mummified 170", "Rock 170"],
                    multiselect=False,
                    value="Rock 170", # default option
                    label="Model",
                    interactive=True,
                )
                class_predicted = gr.Label(label='Class Predicted',num_top_classes=10)
               
        with gr.Row():
           
            paths = sorted(pathlib.Path('images/').rglob('*.jpg'))
            samples=[[path.as_posix()] for path in paths  if 'fossils' in  str(path) ][:19]
            examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=10,label='Fossils Examples from the dataset')
            samples=[[path.as_posix()] for path in paths  if 'leaves' in  str(path) ][:19]
            examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Leaves Examples from the dataset')
            
        # with gr.Accordion("Using Diffuser"):
        #     with gr.Column(): 
        #         prompt = gr.Textbox(lines=1, label="Prompt")
        #         output_image = gr.Image(label="Output")
        #         generate_button = gr.Button("Generate Leave")    
        #     with gr.Column():
        #         class_predicted2 = gr.Label(label='Class Predicted from diffuser')
        #         classify_button = gr.Button("Classify Image")
            
        
        with gr.Accordion("Explanations "):
            gr.Markdown("Computing Explanations from the model")
            with gr.Row():
                #original_input = gr.Image(label="Original Frame")
                saliency  = gr.Image(label="saliency")
                gradcam = gr.Image(label='integraged gradients')
                guided_gradcam = gr.Image(label='gradcam')
                #guided_backprop = gr.Image(label='guided backprop')
            generate_explanations = gr.Button("Generate Explanations")
                
        with gr.Accordion('Closest Images'):
            gr.Markdown("Finding the closest images in the dataset")
            with gr.Row():
                closest_image_0 = gr.Image(label='Closest Image')
                closest_image_1 = gr.Image(label='Second Closest Image')
                closest_image_2 = gr.Image(label='Third Closest Image')
                closest_image_3 = gr.Image(label='Forth Closest Image')
                closest_image_4 = gr.Image(label='Fifth Closest Image')
            find_closest_btn = gr.Button("Find Closest Images")
            
        segment_button.click(segment_image, inputs=input_image, outputs=segmented_image)
        classify_image_button.click(classify_image, inputs=[input_image,model_name], outputs=class_predicted)
        generate_explanations.click(explain_image, inputs=[input_image,model_name], outputs=[saliency,gradcam,guided_gradcam])
        find_closest_btn.click(find_closest, inputs=[input_image,model_name], outputs=[closest_image_0,closest_image_1,closest_image_2,closest_image_3,closest_image_4])
        #classify_segmented_button.click(classify_image, inputs=[segmented_image,model_name], outputs=class_predicted)
        
demo.queue()     # manage multiple incoming requests
   
if os.getenv('SYSTEM') == 'spaces':
    demo.launch(width='40%',auth=(os.environ.get('USERNAME'), os.environ.get('PASSWORD')))
else: 
    demo.launch()