Spaces:
Sleeping
Sleeping
File size: 7,785 Bytes
92d14a2 f1c6a3d 97f07be f1c6a3d e01f7c2 97f07be f1c6a3d 92d14a2 97f07be 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 af9c1e6 92d14a2 730f5a5 92d14a2 679611d 92d14a2 730f5a5 92d14a2 af9c1e6 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 af9c1e6 92d14a2 78d19ee 92d14a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import sys
from env import config_env
config_env()
import gradio as gr
from huggingface_hub import snapshot_download
import cv2
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference_sam import segmentation_sam
from explanations import explain
from inference_resnet import get_triplet_model
import pathlib
import tensorflow as tf
from closest_sample import get_images
if not os.path.exists('images'):
REPO_ID='Serrelab/image_examples_gradio'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images')
def get_model(model_name):
if model_name=='Mummified 170':
n_classes = 170
model = get_triplet_model(input_shape = (600, 600, 3),
embedding_units = 256,
embedding_depth = 2,
backbone_class=tf.keras.applications.ResNet50V2,
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
model.load_weights('model_classification/mummified-170.h5')
elif model_name=='Rock 170':
n_classes = 171
model = get_triplet_model(input_shape = (600, 600, 3),
embedding_units = 256,
embedding_depth = 2,
backbone_class=tf.keras.applications.ResNet50V2,
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
model.load_weights('model_classification/rock-170.h5')
else:
return 'Error'
return model,n_classes
def segment_image(input_image):
img = segmentation_sam(input_image)
return img
def classify_image(input_image, model_name):
if 'Rock 170' ==model_name:
from inference_resnet import inference_resnet_finer
model,n_classes= get_model(model_name)
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Mummified 170' ==model_name:
from inference_resnet import inference_resnet_finer
model, n_classes= get_model(model_name)
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
return result
if 'Fossils 19' ==model_name:
from inference_beit import inference_dino
model,n_classes = get_model(model_name)
return inference_dino(input_image,model_name)
return None
def get_embeddings(input_image,model_name):
if 'Rock 170' ==model_name:
from inference_resnet import inference_resnet_embedding
model,n_classes= get_model(model_name)
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Mummified 170' ==model_name:
from inference_resnet import inference_resnet_embedding
model, n_classes= get_model(model_name)
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
return result
if 'Fossils 19' ==model_name:
from inference_beit import inference_dino
model,n_classes = get_model(model_name)
return inference_dino(input_image,model_name)
return None
def find_closest(input_image,model_name):
embedding = get_embeddings(input_image,model_name)
paths = get_images(embedding)
return paths
def explain_image(input_image,model_name):
model,n_classes= get_model(model_name)
saliency, integrated, smoothgrad = explain(model,input_image,n_classes=n_classes)
#original = saliency + integrated + smoothgrad
print('done')
return saliency, integrated, smoothgrad,
#minimalist theme
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
with gr.Tab(" Florrissant Fossils"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input")
classify_image_button = gr.Button("Classify Image")
with gr.Column():
#segmented_image = gr.outputs.Image(label="SAM output",type='numpy')
segmented_image=gr.Image(label="Segmented Image", type='numpy')
segment_button = gr.Button("Segment Image")
#classify_segmented_button = gr.Button("Classify Segmented Image")
with gr.Column():
model_name = gr.Dropdown(
["Mummified 170", "Rock 170"],
multiselect=False,
value="Rock 170", # default option
label="Model",
interactive=True,
)
class_predicted = gr.Label(label='Class Predicted',num_top_classes=10)
with gr.Row():
paths = sorted(pathlib.Path('images/').rglob('*.jpg'))
samples=[[path.as_posix()] for path in paths if 'fossils' in str(path) ][:19]
examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=10,label='Fossils Examples from the dataset')
samples=[[path.as_posix()] for path in paths if 'leaves' in str(path) ][:19]
examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Leaves Examples from the dataset')
# with gr.Accordion("Using Diffuser"):
# with gr.Column():
# prompt = gr.Textbox(lines=1, label="Prompt")
# output_image = gr.Image(label="Output")
# generate_button = gr.Button("Generate Leave")
# with gr.Column():
# class_predicted2 = gr.Label(label='Class Predicted from diffuser')
# classify_button = gr.Button("Classify Image")
with gr.Accordion("Explanations "):
gr.Markdown("Computing Explanations from the model")
with gr.Row():
#original_input = gr.Image(label="Original Frame")
saliency = gr.Image(label="saliency")
gradcam = gr.Image(label='integraged gradients')
guided_gradcam = gr.Image(label='gradcam')
#guided_backprop = gr.Image(label='guided backprop')
generate_explanations = gr.Button("Generate Explanations")
with gr.Accordion('Closest Images'):
gr.Markdown("Finding the closest images in the dataset")
with gr.Row():
closest_image_0 = gr.Image(label='Closest Image')
closest_image_1 = gr.Image(label='Second Closest Image')
closest_image_2 = gr.Image(label='Third Closest Image')
closest_image_3 = gr.Image(label='Forth Closest Image')
closest_image_4 = gr.Image(label='Fifth Closest Image')
find_closest_btn = gr.Button("Find Closest Images")
segment_button.click(segment_image, inputs=input_image, outputs=segmented_image)
classify_image_button.click(classify_image, inputs=[input_image,model_name], outputs=class_predicted)
generate_explanations.click(explain_image, inputs=[input_image,model_name], outputs=[saliency,gradcam,guided_gradcam])
find_closest_btn.click(find_closest, inputs=[input_image,model_name], outputs=[closest_image_0,closest_image_1,closest_image_2,closest_image_3,closest_image_4])
#classify_segmented_button.click(classify_image, inputs=[segmented_image,model_name], outputs=class_predicted)
demo.queue() # manage multiple incoming requests
if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('USERNAME'), os.environ.get('PASSWORD')))
else:
demo.launch()
|