Spaces:
Sleeping
Sleeping
File size: 6,697 Bytes
92d14a2 45f98c8 674635a 45f98c8 674635a 45f98c8 674635a 45f98c8 92d14a2 730f5a5 674635a 97f07be 674635a 4c7102b 92d14a2 505fe72 6e2a000 505fe72 674635a 92d14a2 505fe72 92d14a2 674635a 92d14a2 674635a 92d14a2 730f5a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import torch
import tensorflow as tf
device = torch.device("cpu")
print(f"Torch device: {device}")
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# if device.type == "cuda":
# torch.cuda.set_per_process_memory_fraction(0.3, device=device.index if device.index is not None else 0)
# else:
# device = "cpu"
# print(f"Torch device: {device}")
tf.config.set_visible_devices([], 'GPU')
# gpu_devices = tf.config.experimental.list_physical_devices('GPU')
# if gpu_devices:
# tf.config.experimental.set_memory_growth(gpu_devices[0], True)
# else:
# print(f"TensorFlow device: {gpu_devices}")
from segment_anything import SamPredictor, sam_model_registry
import matplotlib.pyplot as plt
import cv2
import numpy as np
from math import ceil
import os
from huggingface_hub import snapshot_download
if not os.path.exists('model'):
REPO_ID='Serrelab/SAM_Leaves'
token = os.environ.get('READ_TOKEN')
print(f"Read token:{token}")
if token is None:
print("warning! A read token in env variables is needed for authentication.")
snapshot_download(repo_id=REPO_ID, token=token,repo_type='model',local_dir='model')
original_torch_load = torch.load
def patched_torch_load(*args, **kwargs):
kwargs['map_location'] = device
return original_torch_load(*args, **kwargs)
torch.load = patched_torch_load
model_path = os.path.join('model', 'sam_02-06_dice_mse_0.pth')
sam = sam_model_registry["default"](model_path)
sam.to(device) #sam.cuda()
predictor = SamPredictor(sam)
torch.load = original_torch_load
from torch.nn import functional as F
def pad_gt(x):
h, w = x.shape[-2:]
padh = sam.image_encoder.img_size - h
padw = sam.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def preprocess(img):
img = np.array(img).astype(np.uint8)
#assert img.max() > 127.0
img_preprocess = predictor.transform.apply_image(img)
intermediate_shape = img_preprocess.shape
img_preprocess = torch.as_tensor(img_preprocess).to(device) #torch.as_tensor(img_preprocess).cuda()
img_preprocess = img_preprocess.permute(2, 0, 1).contiguous()[None, :, :, :]
img_preprocess = sam.preprocess(img_preprocess)
if len(intermediate_shape) == 3:
intermediate_shape = intermediate_shape[:2]
elif len(intermediate_shape) == 4:
intermediate_shape = intermediate_shape[1:3]
return img_preprocess, intermediate_shape
def normalize(img):
img = img - tf.math.reduce_min(img)
img = img / tf.math.reduce_max(img)
img = img * 2.0 - 1.0
return img
def resize(img):
# default resize function for all pi outputs
return tf.image.resize(img, (SIZE, SIZE), method="bicubic")
def smooth_mask(mask, ds=20):
shape = tf.shape(mask)
w, h = shape[0], shape[1]
return tf.image.resize(tf.image.resize(mask, (ds, ds), method="bicubic"), (w, h), method="bicubic")
def pi(img, mask):
img = tf.cast(img, tf.float32)
shape = tf.shape(img)
w, h = tf.cast(shape[0], tf.int64), tf.cast(shape[1], tf.int64)
mask = smooth_mask(mask.cpu().numpy().astype(float))
mask = tf.reduce_mean(mask, -1)
img = img * tf.cast(mask > 0.01, tf.float32)[:, :, None]
img_resize = tf.image.resize(img, (SIZE, SIZE), method="bicubic", antialias=True)
img_pad = tf.image.resize_with_pad(img, SIZE, SIZE, method="bicubic", antialias=True)
# building 2 anchors
anchors = tf.where(mask > 0.15)
anchor_xmin = tf.math.reduce_min(anchors[:, 0])
anchor_xmax = tf.math.reduce_max(anchors[:, 0])
anchor_ymin = tf.math.reduce_min(anchors[:, 1])
anchor_ymax = tf.math.reduce_max(anchors[:, 1])
if anchor_xmax - anchor_xmin > 50 and anchor_ymax - anchor_ymin > 50:
img_anchor_1 = resize(img[anchor_xmin:anchor_xmax, anchor_ymin:anchor_ymax])
delta_x = (anchor_xmax - anchor_xmin) // 4
delta_y = (anchor_ymax - anchor_ymin) // 4
img_anchor_2 = img[anchor_xmin+delta_x:anchor_xmax-delta_x,
anchor_ymin+delta_y:anchor_ymax-delta_y]
img_anchor_2 = resize(img_anchor_2)
else:
img_anchor_1 = img_resize
img_anchor_2 = img_pad
# building the anchors max
anchor_max = tf.where(mask == tf.math.reduce_max(mask))[0]
anchor_max_x, anchor_max_y = anchor_max[0], anchor_max[1]
img_max_zoom1 = img[tf.math.maximum(anchor_max_x-SIZE, 0): tf.math.minimum(anchor_max_x+SIZE, w),
tf.math.maximum(anchor_max_y-SIZE, 0): tf.math.minimum(anchor_max_y+SIZE, h)]
img_max_zoom1 = resize(img_max_zoom1)
img_max_zoom2 = img[anchor_max_x-SIZE//2:anchor_max_x+SIZE//2,
anchor_max_y-SIZE//2:anchor_max_y+SIZE//2]
#img_max_zoom2 = img[tf.math.maximum(anchor_max_x-SIZE//2, 0): tf.math.minimum(anchor_max_x+SIZE//2, w),
# tf.math.maximum(anchor_max_y-SIZE//2, 0): tf.math.minimum(anchor_max_y+SIZE//2, h)]
#tf.print(img_max_zoom2.shape)
#img_max_zoom2 = resize(img_max_zoom2)
return tf.cast([
img_resize,
#img_pad,
img_anchor_1,
img_anchor_2,
img_max_zoom1,
#img_max_zoom2,
], tf.float32)
def one_step_inference(x):
if len(x.shape) == 3:
original_size = x.shape[:2]
elif len(x.shape) == 4:
original_size = x.shape[1:3]
x, intermediate_shape = preprocess(x)
with torch.no_grad():
image_embedding = sam.image_encoder(x)
with torch.no_grad():
sparse_embeddings, dense_embeddings = sam.prompt_encoder(points = None, boxes = None,masks = None)
low_res_masks, iou_predictions = sam.mask_decoder(
image_embeddings=image_embedding,
image_pe=sam.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
if len(x.shape) == 3:
input_size = tuple(x.shape[:2])
elif len(x.shape) == 4:
input_size = tuple(x.shape[-2:])
#upscaled_masks = sam.postprocess_masks(low_res_masks, input_size, original_size).cuda()
mask = F.interpolate(low_res_masks, (1024, 1024))[:, :, :intermediate_shape[0], :intermediate_shape[1]]
mask = F.interpolate(mask, (original_size[0], original_size[1]))
return mask.to(device) #mask
def segmentation_sam(x,SIZE=384):
x = tf.image.resize_with_pad(x, SIZE, SIZE)
predicted_mask = one_step_inference(x)
fig, ax = plt.subplots()
img = x.cpu().numpy()
mask = predicted_mask.cpu().numpy()[0][0]>0.2
ax.imshow(img)
ax.imshow(mask, cmap='jet', alpha=0.4)
plt.savefig('test.png')
ax.axis('off')
fig.canvas.draw()
# Now we can save it to a numpy array.
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
|