File size: 6,469 Bytes
92d14a2
45f98c8
674635a
45f98c8
674635a
45f98c8
 
 
 
 
 
674635a
45f98c8
 
 
 
 
 
92d14a2
 
 
 
 
 
 
 
 
730f5a5
 
674635a
97f07be
674635a
 
4c7102b
92d14a2
6e2a000
 
674635a
92d14a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674635a
92d14a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674635a
92d14a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730f5a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import tensorflow as tf

device = torch.device("cpu")
print(f"Torch device: {device}")
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# if device.type == "cuda":
#     torch.cuda.set_per_process_memory_fraction(0.3, device=device.index if device.index is not None else 0)
# else:
#    device = "cpu"
# print(f"Torch device: {device}")

tf.config.set_visible_devices([], 'GPU')
# gpu_devices = tf.config.experimental.list_physical_devices('GPU')
# if gpu_devices:
#     tf.config.experimental.set_memory_growth(gpu_devices[0], True)
# else:
#     print(f"TensorFlow device: {gpu_devices}")

from segment_anything import SamPredictor, sam_model_registry
import matplotlib.pyplot as plt
import cv2
import numpy as np
from math import ceil
import os
from huggingface_hub import snapshot_download

if not os.path.exists('model'):
  REPO_ID='Serrelab/SAM_Leaves'
  token = os.environ.get('READ_TOKEN')
  print(f"Read token:{token}")
  if token is None:
     print("warning! A read token in env variables is needed for authentication.")
  snapshot_download(repo_id=REPO_ID, token=token,repo_type='model',local_dir='model')

model_path = os.path.join('model', 'sam_02-06_dice_mse_0.pth')
sam = sam_model_registry["default"](model_path)
sam.to(device) #sam.cuda()
predictor = SamPredictor(sam)


from torch.nn import functional as F


def pad_gt(x):
  h, w = x.shape[-2:]
  padh = sam.image_encoder.img_size - h
  padw = sam.image_encoder.img_size - w
  x = F.pad(x, (0, padw, 0, padh))
  return x

def preprocess(img):
 
  img = np.array(img).astype(np.uint8)

  #assert img.max() > 127.0

  img_preprocess = predictor.transform.apply_image(img)
  intermediate_shape = img_preprocess.shape

  img_preprocess = torch.as_tensor(img_preprocess).to(device) #torch.as_tensor(img_preprocess).cuda()
  img_preprocess = img_preprocess.permute(2, 0, 1).contiguous()[None, :, :, :]

  img_preprocess = sam.preprocess(img_preprocess)
  if len(intermediate_shape) == 3:
     intermediate_shape = intermediate_shape[:2]
  elif len(intermediate_shape) == 4:
     intermediate_shape = intermediate_shape[1:3]

  return img_preprocess, intermediate_shape


def normalize(img):
  img = img - tf.math.reduce_min(img)
  img = img / tf.math.reduce_max(img)
  img = img * 2.0 - 1.0
  return img

def resize(img):
  # default resize function for all pi outputs
  return tf.image.resize(img, (SIZE, SIZE), method="bicubic")

def smooth_mask(mask, ds=20):
  shape = tf.shape(mask)
  w, h = shape[0], shape[1]
  return tf.image.resize(tf.image.resize(mask, (ds, ds), method="bicubic"), (w, h), method="bicubic")

def pi(img, mask):
  img = tf.cast(img, tf.float32)

  shape = tf.shape(img)
  w, h = tf.cast(shape[0], tf.int64), tf.cast(shape[1], tf.int64)
  
  mask = smooth_mask(mask.cpu().numpy().astype(float))
  mask = tf.reduce_mean(mask, -1)

  img = img * tf.cast(mask > 0.01, tf.float32)[:, :, None]


  img_resize = tf.image.resize(img, (SIZE, SIZE), method="bicubic", antialias=True)
  img_pad = tf.image.resize_with_pad(img, SIZE, SIZE, method="bicubic", antialias=True)

  # building 2 anchors
  anchors = tf.where(mask > 0.15)
  anchor_xmin = tf.math.reduce_min(anchors[:, 0])
  anchor_xmax = tf.math.reduce_max(anchors[:, 0])
  anchor_ymin = tf.math.reduce_min(anchors[:, 1])
  anchor_ymax = tf.math.reduce_max(anchors[:, 1])

  if anchor_xmax - anchor_xmin > 50 and anchor_ymax - anchor_ymin > 50:

    img_anchor_1 = resize(img[anchor_xmin:anchor_xmax, anchor_ymin:anchor_ymax])

    delta_x = (anchor_xmax - anchor_xmin) // 4
    delta_y = (anchor_ymax - anchor_ymin) // 4
    img_anchor_2 = img[anchor_xmin+delta_x:anchor_xmax-delta_x,
                      anchor_ymin+delta_y:anchor_ymax-delta_y]
    img_anchor_2 = resize(img_anchor_2)
  else:
    img_anchor_1 = img_resize
    img_anchor_2 = img_pad

  # building the anchors max
  anchor_max = tf.where(mask == tf.math.reduce_max(mask))[0]
  anchor_max_x, anchor_max_y = anchor_max[0], anchor_max[1]

  img_max_zoom1 = img[tf.math.maximum(anchor_max_x-SIZE, 0): tf.math.minimum(anchor_max_x+SIZE, w),
                      tf.math.maximum(anchor_max_y-SIZE, 0): tf.math.minimum(anchor_max_y+SIZE, h)]

  img_max_zoom1 = resize(img_max_zoom1)
  img_max_zoom2 = img[anchor_max_x-SIZE//2:anchor_max_x+SIZE//2,
                      anchor_max_y-SIZE//2:anchor_max_y+SIZE//2]
  #img_max_zoom2 = img[tf.math.maximum(anchor_max_x-SIZE//2, 0): tf.math.minimum(anchor_max_x+SIZE//2, w),
  #                    tf.math.maximum(anchor_max_y-SIZE//2, 0): tf.math.minimum(anchor_max_y+SIZE//2, h)]
  #tf.print(img_max_zoom2.shape)
  #img_max_zoom2 = resize(img_max_zoom2)
  return tf.cast([
      img_resize,
      #img_pad,
      img_anchor_1,
      img_anchor_2,
      img_max_zoom1,
      #img_max_zoom2,
    ], tf.float32)
  
def one_step_inference(x):
  if len(x.shape) == 3:
    original_size = x.shape[:2]
  elif len(x.shape) == 4:
    original_size = x.shape[1:3]
  
  x, intermediate_shape = preprocess(x)

  with torch.no_grad():
    image_embedding = sam.image_encoder(x)

  with torch.no_grad():
    sparse_embeddings, dense_embeddings = sam.prompt_encoder(points = None, boxes = None,masks = None)
    low_res_masks, iou_predictions = sam.mask_decoder(
    image_embeddings=image_embedding,
    image_pe=sam.prompt_encoder.get_dense_pe(),
    sparse_prompt_embeddings=sparse_embeddings,
    dense_prompt_embeddings=dense_embeddings,
    multimask_output=False,
    )
    if len(x.shape) == 3:
        input_size = tuple(x.shape[:2])
    elif len(x.shape) == 4:
        input_size = tuple(x.shape[-2:])
    

    #upscaled_masks = sam.postprocess_masks(low_res_masks, input_size, original_size).cuda()
    mask = F.interpolate(low_res_masks, (1024, 1024))[:, :, :intermediate_shape[0], :intermediate_shape[1]]
    mask = F.interpolate(mask, (original_size[0], original_size[1]))

  return mask.to(device) #mask

def segmentation_sam(x,SIZE=384):
    
    x = tf.image.resize_with_pad(x, SIZE, SIZE)
    predicted_mask = one_step_inference(x)
    fig, ax =  plt.subplots()
    img = x.cpu().numpy()
    mask = predicted_mask.cpu().numpy()[0][0]>0.2
    ax.imshow(img)
    ax.imshow(mask, cmap='jet', alpha=0.4)
    plt.savefig('test.png')
    ax.axis('off')
    fig.canvas.draw()
    # Now we can save it to a numpy array.
    data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data