Spaces:
Sleeping
Sleeping
File size: 23,606 Bytes
92d14a2 f1c6a3d 97f07be f1c6a3d e01f7c2 97f07be f1c6a3d 92d14a2 97f07be 92d14a2 80d9d8d 730f5a5 c160b1e 0c61c42 92d14a2 730f5a5 86104a0 92d14a2 0c61c42 86104a0 89f811d 1683fc9 89f811d 86104a0 b64ed04 86104a0 b64ed04 86104a0 b64ed04 86104a0 730f5a5 0b77991 85494ec 0b77991 85494ec 0b77991 0aa9379 c160b1e 730f5a5 c5343e6 730f5a5 92d14a2 c5343e6 92d14a2 0c61c42 92d14a2 730f5a5 92d14a2 730f5a5 92d14a2 85494ec 0c61c42 730f5a5 0c61c42 c5343e6 85494ec 0aa9379 c160b1e 0aa9379 92d14a2 730f5a5 85494ec 86104a0 85494ec 0aa9379 c160b1e 0aa9379 730f5a5 92d14a2 730f5a5 5a566ad c5343e6 730f5a5 86104a0 5a566ad 86104a0 730f5a5 85494ec 0c61c42 c5343e6 86104a0 730f5a5 86104a0 e3307dd a3b0297 86104a0 a3b0297 86104a0 35d2da8 86104a0 1f0c095 7e7fba0 86104a0 85494ec 3807486 5ad4e9c 3807486 86104a0 3807486 c071975 c577b1b 3807486 c577b1b 3807486 c577b1b 3807486 1f0c095 86104a0 af9c1e6 92d14a2 730f5a5 86104a0 92d14a2 86104a0 f8b140a 86104a0 92d14a2 0c61c42 92d14a2 730f5a5 1662a5d 92d14a2 85494ec 92d14a2 86104a0 92d14a2 86104a0 5ad4e9c 86104a0 7a2259a 86104a0 7a2259a 86104a0 7a2259a 86104a0 1f0c095 86104a0 7b461d5 35d2da8 503ec98 86104a0 92d14a2 730f5a5 c5343e6 86104a0 7a2259a 86104a0 1f0c095 86104a0 c5343e6 86104a0 c5343e6 1f0c095 730f5a5 86104a0 1f0c095 86104a0 1f0c095 86104a0 92d14a2 af9c1e6 92d14a2 78d19ee 745a679 78d19ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import os
import sys
from env import config_env
config_env()
import gradio as gr
from huggingface_hub import snapshot_download
import cv2
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference_sam import segmentation_sam
from explanations import explain
from inference_resnet import get_triplet_model
from inference_resnet_v2 import get_resnet_model,inference_resnet_embedding_v2,inference_resnet_finer_v2
from inference_beit import get_triplet_model_beit
import pathlib
import tensorflow as tf
from closest_sample import get_images,get_diagram
if not os.path.exists('images'):
REPO_ID='Serrelab/image_examples_gradio'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images')
if not os.path.exists('dataset'):
REPO_ID='Serrelab/Fossils'
token = os.environ.get('READ_TOKEN')
print(f"Read token:{token}")
if token is None:
print("warning! A read token in env variables is needed for authentication.")
snapshot_download(repo_id=REPO_ID, token=token,repo_type='dataset',local_dir='dataset')
HEADER = '''
<div style='display: flex; align-items: baseline;'>
<h1 style='margin-right: 10px;'><b>Official Gradio Demo:</b></h1>
<h1>π <a href='https://huggingface.co/spaces/Serrelab/fossil_app' target='_blank'><b>Identifying Florissant Leaf Fossils to Family using Deep Neural Networks</b></a></h1>
</div>
Code: <a href='https://github.com/orgs/serre-lab/projects/2' target='_blank'>GitHub</a>. Paper: <a href='' target='_blank'>ArXiv</a>.
'''
"""
**Fossil** a brief intro to the project.
# βοΈβοΈβοΈ**Important Notes:**
# - some notes to users some notes to users some notes to users some notes to users some notes to users some notes to users .
# - some notes to users some notes to users some notes to users some notes to users some notes to users some notes to users.
"""
USER_GUIDE = """
<div style='background-color: #f0f0f0; padding: 20px; border-radius: 10px;'>
<h2 style='font-size: 22px;'>βοΈ User Guide</h2>
<p style='font-size: 16px;'>Welcome to the interactive fossil exploration tool. Here's how to get started:</p>
<ul style='font-size: 16px;'>
<li><strong>Upload an Image:</strong> Drag and drop or choose from given samples to upload images of fossils.</li>
<li><strong>Process Image:</strong> After uploading, click the 'Process Image' button to analyze the image.</li>
<li><strong>Explore Results:</strong> Switch to the 'Workbench' tab to check out detailed analysis and results.</li>
</ul>
<h3 style='font-size: 18px;'>Tips</h3>
<ul style='font-size: 16px;'>
<li>Zoom into images on the workbench for finer details.</li>
<li>Use the examples below as references for what types of images to upload.</li>
</ul>
<p style='font-size: 16px;'>Enjoy exploring! π</p>
</div>
"""
TIPS = """
## Tips
- Zoom into images on the workbench for finer details.
- Use the examples below as references for what types of images to upload.
Enjoy exploring!
"""
CITATION = '''
π§ **Contact** <br>
If you have any questions, feel free to contact us at <b>ivan_felipe_rodriguez@brown.edu</b>.
'''
"""
π **Citation**
cite using this bibtex:...
```
```
π **License**
"""
def get_model(model_name):
if model_name=='Mummified 170':
n_classes = 170
model = get_triplet_model(input_shape = (600, 600, 3),
embedding_units = 256,
embedding_depth = 2,
backbone_class=tf.keras.applications.ResNet50V2,
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
model.load_weights('model_classification/mummified-170.h5')
elif model_name=='Rock 170':
n_classes = 171
model = get_triplet_model(input_shape = (600, 600, 3),
embedding_units = 256,
embedding_depth = 2,
backbone_class=tf.keras.applications.ResNet50V2,
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
model.load_weights('model_classification/rock-170.h5')
# elif model_name == 'Fossils 142': #BEiT
# n_classes = 142
# model = get_triplet_model_beit(input_shape = (384, 384, 3),
# embedding_units = 256,
# embedding_depth = 2,
# n_classes = n_classes)
# model.load_weights('model_classification/fossil-142.h5')
# elif model_name == 'Fossils new': # BEiT-v2
# n_classes = 142
# model = get_triplet_model_beit(input_shape = (384, 384, 3),
# embedding_units = 256,
# embedding_depth = 2,
# n_classes = n_classes)
# model.load_weights('model_classification/fossil-new.h5')
elif model_name == 'Fossils 142': # new resnet
n_classes = 142
model,_,_ = get_resnet_model('model_classification/fossil-model.h5')
else:
raise ValueError(f"Model name '{model_name}' is not recognized")
return model,n_classes
def segment_image(input_image):
img = segmentation_sam(input_image)
return img
def classify_image(input_image, model_name):
#segmented_image = segment_image(input_image)
if 'Rock 170' ==model_name:
from inference_resnet import inference_resnet_finer
model,n_classes= get_model(model_name)
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Mummified 170' ==model_name:
from inference_resnet import inference_resnet_finer
model, n_classes= get_model(model_name)
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Fossils BEiT' ==model_name:
from inference_beit import inference_resnet_finer_beit
model,n_classes = get_model(model_name)
result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
return result
# elif 'Fossils new' ==model_name:
# from inference_beit import inference_resnet_finer_beit
# model,n_classes = get_model(model_name)
# result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
# return result
elif 'Fossils 142' ==model_name:
from inference_beit import inference_resnet_finer_beit
model,n_classes = get_model(model_name)
result = inference_resnet_finer_v2(input_image,model,size=384,n_classes=n_classes)
return result
return None
def get_embeddings(input_image,model_name):
if 'Rock 170' ==model_name:
from inference_resnet import inference_resnet_embedding
model,n_classes= get_model(model_name)
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Mummified 170' ==model_name:
from inference_resnet import inference_resnet_embedding
model, n_classes= get_model(model_name)
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
return result
elif 'Fossils BEiT' ==model_name:
from inference_beit import inference_resnet_embedding_beit
model,n_classes = get_model(model_name)
result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
return result
# elif 'Fossils new' ==model_name:
# from inference_beit import inference_resnet_embedding_beit
# model,n_classes = get_model(model_name)
# result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
# return result
elif 'Fossils 142' ==model_name:
from inference_beit import inference_resnet_embedding_beit
model,n_classes = get_model(model_name)
result = inference_resnet_embedding_v2(input_image,model,size=384,n_classes=n_classes)
return result
return None
def find_closest(input_image,model_name):
embedding = get_embeddings(input_image,model_name)
classes, paths = get_images(embedding,model_name)
#outputs = classes+paths
return classes,paths
def generate_diagram_closest(input_image,model_name,top_k):
embedding = get_embeddings(input_image,model_name)
diagram_path = get_diagram(embedding,top_k,model_name)
return diagram_path
def explain_image(input_image,model_name,explain_method,nb_samples):
model,n_classes= get_model(model_name)
if model_name=='Fossils BEiT' or 'Fossils 142':
size = 384
else:
size = 600
#saliency, integrated, smoothgrad,
classes,exp_list = explain(model,input_image,explain_method,nb_samples,size = size, n_classes=n_classes)
#original = saliency + integrated + smoothgrad
print('done')
return classes,exp_list
def setup_examples():
paths = sorted(pathlib.Path('images/').rglob('*.jpg'))
samples = [path.as_posix() for path in paths if 'selected fossil examples' in str(path)][:23]
examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=8,label='Fossils Examples from the dataset')
samples=[[path.as_posix()] for path in paths if 'leaves' in str(path) ][:19]
examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=8,label='Leaves Examples from the dataset')
return examples_fossils,examples_leaves
def preprocess_image(image, output_size=(300, 300)):
#shape (height, width, channels)
h, w = image.shape[:2]
#padding
if h > w:
padding = (h - w) // 2
image_padded = cv2.copyMakeBorder(image, 0, 0, padding, padding, cv2.BORDER_CONSTANT, value=[0, 0, 0])
else:
padding = (w - h) // 2
image_padded = cv2.copyMakeBorder(image, padding, padding, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])
# resize
image_resized = cv2.resize(image_padded, output_size, interpolation=cv2.INTER_AREA)
return image_resized
def increase_brightness(img, value=30):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Convert to HSV
h, s, v = cv2.split(hsv)
lim = 255 - value
v[v > lim] = 255
v[v <= lim] += value
final_hsv = cv2.merge((h, s, v))
img_bright = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)
return img_bright
def update_display(image):
original_image = image
processed_image = preprocess_image(image)
instruction = "Image ready. Please switch to the 'Specimen Workbench' tab to check out further analysis and outputs."
model_name = "Fossils 142"
# gr.Dropdown(
# ["Mummified 170", "Rock 170","Fossils 142","Fossils new"],
# multiselect=False,
# value="Fossils new", # default option
# label="Model",
# interactive=True,
# info="Choose the model you'd like to use"
# )
explain_method = "Rise"
# gr.Dropdown(
# ["Sobol", "HSIC","Rise","Saliency"],
# multiselect=False,
# value="Rise", # default option
# label="Explain method",
# interactive=True,
# info="Choose one method to explain the model"
# )
sampling_size = 10
# gr.Slider(1, 5000, value=2000, label="Sampling Size in Rise",interactive=True,visible=True,
# info="Choose between 1 and 5000")
top_k = 50
# gr.Slider(10,200,value=50,label="Number of Closest Samples for Distribution Chart",interactive=True,info="Choose between 10 and 200")
class_predicted = None # gr.Label(label='Class Predicted',num_top_classes=10)
exp_gallery = None
# gr.Gallery(label="Explanation Heatmaps for top 5 predicted classes", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
closest_gallery = None
# gr.Gallery(label="Closest Images", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
diagram= None
# gr.Image(label = 'Bar Chart')
return original_image,processed_image,processed_image,instruction,model_name,explain_method,sampling_size,top_k,class_predicted,exp_gallery,closest_gallery,diagram
def update_slider_visibility(explain_method):
bool = explain_method=="Rise"
return {sampling_size: gr.Slider(1, 5000, value=2000, label="Sampling Size in Rise", visible=bool, interactive=True)}
#minimalist theme
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
with gr.Tab(" Florrissant Fossils"):
gr.Markdown(HEADER)
with gr.Row():
with gr.Column():
gr.Markdown(USER_GUIDE)
with gr.Column(scale=2):
with gr.Column(scale=2):
instruction_text = gr.Textbox(label="Instructions", value="Upload/Choose an image and click 'Process Image'.")
input_image = gr.Image(label="Input",width="100%",container=True)
process_button = gr.Button("Process Image")
with gr.Column(scale=1):
examples_fossils,examples_leaves = setup_examples()
gr.Markdown(CITATION)
with gr.Tab("Specimen Workbench"):
with gr.Row():
with gr.Column():
original_image = gr.Image(visible = False)
workbench_image = gr.Image(label="Workbench Image")
classify_image_button = gr.Button("Classify Image")
# with gr.Column():
# #segmented_image = gr.outputs.Image(label="SAM output",type='numpy')
# segmented_image=gr.Image(label="Segmented Image", type='numpy')
# segment_button = gr.Button("Segment Image")
# #classify_segmented_button = gr.Button("Classify Segmented Image")
with gr.Column():
model_name = gr.Dropdown(
["Fossils 142"],#"Mummified 170", "Rock 170","Fossils BEiT" removed
multiselect=False,
value="Fossils 142", # default option
label="Model",
interactive=True,
info="Choose the model you'd like to use"
)
explain_method = gr.Dropdown(
["Sobol", "HSIC","Rise","Saliency"],
multiselect=False,
value="Rise", # default option
label="Explain method",
interactive=True,
info="Choose one method to explain the model"
)
# explain_method = gr.CheckboxGroup(["Sobol", "HSIC","Rise","Saliency"],
# label="explain method",
# value="Rise",
# multiselect=False,
# interactive=True,)
sampling_size = gr.Slider(10, 3000, value=10, label="Sampling Size in Rise",interactive=True,visible=True,
info="Choose between 10 and 3000")
top_k = gr.Slider(10,200,value=50,label="Number of Closest Samples for Distribution Chart",interactive=True,info="Choose between 10 and 200")
explain_method.change(
fn=update_slider_visibility,
inputs=explain_method,
outputs=sampling_size
)
with gr.Row():
with gr.Column(scale=1):
class_predicted = gr.Label(label='Plant Family Predicted',num_top_classes=10)
with gr.Column(scale=4):
with gr.Accordion("Explanations "):
gr.Markdown("Computing Explanations from the model for Top 5 Predicted Plant Families")
with gr.Column():
with gr.Row():
#original_input = gr.Image(label="Original Frame")
#saliency = gr.Image(label="saliency")
#gradcam = gr.Image(label='integraged gradients')
#guided_gradcam = gr.Image(label='gradcam')
#guided_backprop = gr.Image(label='guided backprop')
# exp1 = gr.Image(label = 'Class_name1')
# exp2= gr.Image(label = 'Class_name2')
# exp3= gr.Image(label = 'Class_name3')
# exp4= gr.Image(label = 'Class_name4')
# exp5= gr.Image(label = 'Class_name5')
exp_gallery = gr.Gallery(label="Explanation Heatmaps for top 5 predicted classes", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
generate_explanations = gr.Button("Generate Explanations")
# with gr.Accordion('Closest Images'):
# gr.Markdown("Finding the closest images in the dataset")
# with gr.Row():
# with gr.Column():
# label_closest_image_0 = gr.Markdown('')
# closest_image_0 = gr.Image(label='Closest Image',image_mode='contain',width=200, height=200)
# with gr.Column():
# label_closest_image_1 = gr.Markdown('')
# closest_image_1 = gr.Image(label='Second Closest Image',image_mode='contain',width=200, height=200)
# with gr.Column():
# label_closest_image_2 = gr.Markdown('')
# closest_image_2 = gr.Image(label='Third Closest Image',image_mode='contain',width=200, height=200)
# with gr.Column():
# label_closest_image_3 = gr.Markdown('')
# closest_image_3 = gr.Image(label='Forth Closest Image',image_mode='contain', width=200, height=200)
# with gr.Column():
# label_closest_image_4 = gr.Markdown('')
# closest_image_4 = gr.Image(label='Fifth Closest Image',image_mode='contain',width=200, height=200)
# find_closest_btn = gr.Button("Find Closest Images")
with gr.Accordion('Closest Fossil Images'):
gr.Markdown("Finding 5 closest images in the dataset")
with gr.Row():
closest_gallery = gr.Gallery(label="Closest Images", show_label=False,elem_id="gallery",columns=[5], rows=[1],height='auto', allow_preview=True, preview=None)
#.style(grid=[1, 5], height=200, width=200)
find_closest_btn = gr.Button("Find Closest Images")
#segment_button.click(segment_image, inputs=input_image, outputs=segmented_image)
classify_image_button.click(classify_image, inputs=[original_image,model_name], outputs=class_predicted)
# generate_exp.click(exp_image, inputs=[input_image,model_name,explain_method,sampling_size], outputs=[exp1,exp2,exp3,exp4,exp5]) #
# with gr.Accordion('Closest Leaves Images'):
# gr.Markdown("5 closest leaves")
with gr.Accordion("Family Distribution of Closest Samples "):
gr.Markdown("Visualize plant family distribution of top-k closest samples in our dataset")
with gr.Column():
with gr.Row():
diagram= gr.Image(label = 'Bar Chart')
generate_diagram = gr.Button("Generate Diagram")
# with gr.Accordion("Using Diffuser"):
# with gr.Column():
# prompt = gr.Textbox(lines=1, label="Prompt")
# output_image = gr.Image(label="Output")
# generate_button = gr.Button("Generate Leave")
# with gr.Column():
# class_predicted2 = gr.Label(label='Class Predicted from diffuser')
# classify_button = gr.Button("Classify Image")
def update_exp_outputs(input_image,model_name,explain_method,nb_samples):
labels, images = explain_image(input_image,model_name,explain_method,nb_samples)
#labels_html = "".join([f'<div style="display: inline-block; text-align: center; width: 18%;">{label}</div>' for label in labels])
#labels_markdown = f"<div style='width: 100%; text-align: center;'>{labels_html}</div>"
image_caption=[]
for i in range(5):
image_caption.append((images[i],"Predicted Plant Family "+str(i)+": "+labels[i]))
return image_caption
generate_explanations.click(fn=update_exp_outputs, inputs=[original_image,model_name,explain_method,sampling_size], outputs=[exp_gallery])
#find_closest_btn.click(find_closest, inputs=[input_image,model_name], outputs=[label_closest_image_0,label_closest_image_1,label_closest_image_2,label_closest_image_3,label_closest_image_4,closest_image_0,closest_image_1,closest_image_2,closest_image_3,closest_image_4])
def update_closest_outputs(input_image,model_name):
labels, images = find_closest(input_image,model_name)
#labels_html = "".join([f'<div style="display: inline-block; text-align: center; width: 18%;">{label}</div>' for label in labels])
#labels_markdown = f"<div style='width: 100%; text-align: center;'>{labels_html}</div>"
image_caption=[]
for i in range(5):
image_caption.append((images[i],labels[i]))
return image_caption
find_closest_btn.click(fn=update_closest_outputs, inputs=[original_image,model_name], outputs=[closest_gallery])
#classify_segmented_button.click(classify_image, inputs=[segmented_image,model_name], outputs=class_predicted)
generate_diagram.click(generate_diagram_closest, inputs=[original_image,model_name,top_k], outputs=diagram)
process_button.click(
fn=update_display,
inputs=input_image,
outputs=[original_image,input_image,workbench_image,instruction_text,model_name,explain_method,sampling_size,top_k,class_predicted,exp_gallery,closest_gallery,diagram]
)
demo.queue() # manage multiple incoming requests
if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%')
#,auth=(os.environ.get('USERNAME'), os.environ.get('PASSWORD'))
else:
demo.launch()
|