File size: 3,728 Bytes
efdd1f5
 
70fa904
 
 
 
 
 
 
 
 
 
187ebd3
70fa904
 
 
c7d73f9
70fa904
 
 
c7d73f9
70fa904
 
 
efdd1f5
70fa904
 
 
 
 
 
 
 
 
 
 
 
c7d73f9
70fa904
 
 
 
 
 
 
 
 
 
 
 
c7d73f9
70fa904
 
 
 
 
 
 
efdd1f5
70fa904
 
 
 
 
 
c7d73f9
70fa904
 
 
 
 
 
6b3f7f3
70fa904
 
 
 
 
 
 
6b3f7f3
70fa904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efdd1f5
cba4d16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr

modalities_tasks = {
    "NLP": ["Clasificaci贸n de Texto", "Generaci贸n de Texto", "Resumen", "Traducci贸n", "QA"],
    "Audio": ["Reconocimiento de Voz", "Clasificaci贸n de Audio", "Generaci贸n de Audio", "Separaci贸n de Fuentes"],
    "Vision": ["Clasificaci贸n de Im谩genes", "Detecci贸n de Objetos", "Segmentaci贸n", "Generaci贸n de Im谩genes"],
    "RAG": ["B煤squeda Sem谩ntica", "Generaci贸n Aumentada", "QA Contextual"],
    "Code": ["Generaci贸n de C贸digo", "Depuraci贸n", "Traducci贸n entre Lenguajes"],
    "Time Series": ["Predicci贸n", "Detecci贸n de Anomal铆as", "Clasificaci贸n Temporal"],
    "Graph": ["Predicci贸n de Nodos", "Clasificaci贸n de Grafos", "Generaci贸n de Grafos"],
    "Tabular": ["Regresi贸n", "Clasificaci贸n", "Imputaci贸n de Datos"]
}

def generate_csv_header(*args):
    # L贸gica para generar encabezado multimodal
    return "Encabezado generado: ID,Modalidad-Tarea1,Modalidad-Tarea2,..."

def search_datasets():
    # L贸gica para buscar datasets en HuggingFace
    return [["Dataset1", "Descripci贸n1"], ["Dataset2", "Descripci贸n2"]]

def generate_dataset():
    # L贸gica para generar dataset multimodal
    return "sample.csv"

with gr.Blocks() as demo:
    gr.Markdown("# 馃 Dise帽ador de Modelos Multimodales")
    
    # Panel 1: Selecci贸n de Modalidades
    with gr.Row():
        gr.Markdown("## 1. Selecci贸n de Modalidades")
        modality_components = []
        for modality in modalities_tasks:
            with gr.Column():
                modality_components.append(
                    gr.Checkbox(label=modality, interactive=True)
                )

    # Panel 2: Selecci贸n de Tareas
    with gr.Row():
        gr.Markdown("## 2. Configuraci贸n de Tareas")
        task_components = []
        for modality in modalities_tasks:
            with gr.Column(visible=False) as col:
                task_dropdown = gr.Dropdown(
                    choices=modalities_tasks[modality],
                    label=f"Tareas para {modality}",
                    interactive=True
                )
                task_components.append((col, task_dropdown))

    # Actualizar visibilidad de tareas
    for i, modality_check in enumerate(modality_components):
        modality_check.change(
            lambda val, idx=i: gr.update(visible=val),
            inputs=modality_check,
            outputs=task_components[i][0]
        )

    # Panel 3: Generar Encabezado CSV
    with gr.Row():
        gr.Markdown("## 3. Configuraci贸n del Dataset")
        with gr.Column():
            header_btn = gr.Button("Generar Encabezado del CSV")
            header_output = gr.Textbox(label="Estructura del Dataset")

    # Panel 4: B煤squeda de Datasets
    with gr.Row():
        gr.Markdown("## 4. Datasets Disponibles")
        with gr.Column():
            search_btn = gr.Button("Buscar en HuggingFace")
            datasets_table = gr.DataFrame(headers=["Dataset", "Descripci贸n"])

    # Panel 5: Generaci贸n del Dataset
    with gr.Row():
        gr.Markdown("## 5. Generaci贸n Final")
        with gr.Column():
            generate_btn = gr.Button("Generar Dataset Multimodal")
            dataset_output = gr.File(label="Dataset Generado", file_types=[".csv"])
            download_btn = gr.DownloadButton("猬囷笍 Descargar CSV", visible=False)

    # Conectar funcionalidades
    header_btn.click(
        generate_csv_header,
        inputs=[*modality_components, *[t[1] for t in task_components]],
        outputs=header_output
    )
    
    search_btn.click(
        search_datasets,
        outputs=datasets_table
    )
    
    generate_btn.click(
        generate_dataset,
        outputs=[dataset_output, download_btn]
    )

demo.launch()