Spaces:
Runtime error
Runtime error
File size: 7,533 Bytes
3dedab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import tensorflow as tf
from tensorflow.keras.layers import Dense, Dropout, Embedding, LayerNormalization, Layer, Flatten
from tensorflow.keras.models import Model
import numpy as np
class PositionalEncoder(Layer):
def __init__(self, name = "Positional_Encoder"):
super(PositionalEncoder, self).__init__(name = name)
def get_angles(self, pos, i, d_model): # pos: (seq_length, 1) i: (1, d_model)
angles = 1 / np.power(10000., (2*(i//2)) / np.float32(d_model))
return pos * angles # (seq_length, d_model)
def call(self, inputs):
seq_length = inputs.shape.as_list()[-2]
d_model = inputs.shape.as_list()[-1]
angles = self.get_angles(np.arange(seq_length)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
angles[:, 0::2] = np.sin(angles[:, 0::2])
angles[:, 1::2] = np.cos(angles[:, 1::2])
pos_encoding = angles[np.newaxis, ...]
return inputs + tf.cast(pos_encoding, tf.float32)
class ScaledDotProductAttention(Layer):
def __init__(self, name = "Attention"):
super(ScaledDotProductAttention, self).__init__(name = name)
def call(self, queries, keys, values, mask):
product = tf.matmul(queries, keys, transpose_b = True)
keys_dim = tf.cast(tf.shape(keys)[-1], dtype = tf.float32)
scaled_product = product / tf.math.sqrt(keys_dim)
if mask is not None:
scaled_product += (mask * -1e9)
attention = tf.matmul(tf.nn.softmax(scaled_product, axis = -1), values)
return attention
class MultiHeadAttention(Layer):
def __init__(self, nb_proj, name = "Multi_Head_Attention"):
super(MultiHeadAttention, self).__init__(name = name)
self.nb_proj = nb_proj
def build(self, input_shape):
self.d_model = input_shape[-1]
assert self.d_model % self.nb_proj == 0
self.d_proj = self.d_model // self.nb_proj
self.Query_Dense = Dense(units = self.d_model)
self.Key_Dense = Dense(units = self.d_model)
self.Value_Dense = Dense(units = self.d_model)
self.Final_Dense = Dense(units = self.d_model)
self.Attention = ScaledDotProductAttention()
def split_proj(self, inputs, batch_size): # inputs: (batch_size, seq_length, d_model)
shape = (batch_size,
-1,
self.nb_proj,
self.d_proj)
splitted_inputs = tf.reshape(inputs, shape = shape) # (batch_size, seq_length, nb_proj, d_proj)
return tf.transpose(splitted_inputs, perm = [0, 2, 1, 3]) # (batch_size, nb_proj, seq_length, d_proj)
def call(self, queries, keys, values, mask):
batch_size = tf.shape(queries)[0]
queries = self.Query_Dense(queries)
keys = self.Key_Dense(keys)
values = self.Value_Dense(values)
queries = self.split_proj(queries, batch_size)
keys = self.split_proj(keys, batch_size)
values = self.split_proj(values, batch_size)
attention = self.Attention(queries, keys, values, mask)
attention = tf.transpose(attention, perm = [0, 2, 1, 3]) # (batch_size, seq_length, nb_proj, d_proj)
concat_attention = tf.reshape(attention, shape = (batch_size, -1, self.d_model))
outputs = self.Final_Dense(concat_attention)
return outputs
class EncoderLayer(Layer):
def __init__(self, FFN_units, nb_proj, dropout_rate, name = "Encoder_Layer"):
super(EncoderLayer, self).__init__(name = name)
self.FFN_units = FFN_units
self.nb_proj = nb_proj
self.dropout_rate = dropout_rate
def build(self, input_shape):
self.d_model = input_shape[-1]
self.multi_head_attention = MultiHeadAttention(self.nb_proj)
self.dropout_1 = Dropout(rate = self.dropout_rate)
self.norm_1 = LayerNormalization(epsilon = 1e-6)
self.Dense_1 = Dense(units = self.FFN_units, activation = "relu")
self.Dense_2 = Dense(units = self.d_model)
self.dropout_2 = Dropout(rate = self.dropout_rate)
self.norm_2 = LayerNormalization(epsilon = 1e-6)
def call(self, inputs, mask, training):
attention = self.multi_head_attention(inputs,
inputs,
inputs,
mask)
attention = self.dropout_1(attention, training)
attention = self.norm_1(attention + inputs)
outputs = self.Dense_1(attention)
outputs = self.Dense_2(outputs)
outputs = self.dropout_2(outputs, training)
outputs = self.norm_2(outputs + attention)
return outputs
class Encoder(Layer):
def __init__(self, nb_layers, FFN_units,
nb_proj, dropout_rate,
vocab_size, d_model,
name = "Encoder"):
super(Encoder, self).__init__(name = name)
self.nb_layers = nb_layers
self.d_model = d_model
self.embedding = Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoder()
self.dropout = Dropout(rate = dropout_rate)
self.enc_layers = [EncoderLayer(FFN_units,
nb_proj,
dropout_rate)
for _ in range(nb_layers)]
def call(self, inputs, mask, training):
outputs = self.embedding(inputs)
outputs *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
outputs = self.pos_encoder(outputs)
outputs = self.dropout(outputs, training)
for i in range(self.nb_layers):
outputs = self.enc_layers[i](outputs, mask, training)
return outputs
class Transformer(Model):
def __init__(self,
vocab_size_enc,
vocab_size_dec,
d_model,
nb_layers,
FFN_units,
nb_proj,
dropout_rate,
name = "Transformer"):
super(Transformer, self).__init__(name = name)
self.encoder = Encoder(nb_layers,
FFN_units,
nb_proj,
dropout_rate,
vocab_size_enc,
d_model)
self.Flatten = Flatten()
self.Last_Dense = Dense(units = vocab_size_dec, activation = "sigmoid", name = "Linear_Output")
def create_padding_mask(self, seq): # seq: (batch_size, seq_length)
mask = tf.cast(tf.equal(seq, 0), dtype = tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :]
def create_look_ahead_mask(self, seq):
seq_len = tf.shape(seq)[1]
look_ahead_mask = 1 - tf.linalg.band_part(tf.ones(shape = (seq_len, seq_len)), -1, 0)
return look_ahead_mask
def call(self, enc_inputs, training):
enc_mask = self.create_padding_mask(enc_inputs)
enc_outputs = self.encoder(enc_inputs, enc_mask, training)
enc_outputs = self.Flatten(enc_outputs)
outputs = self.Last_Dense(enc_outputs)
return outputs |