File size: 8,060 Bytes
a934afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
'''
 * Copyright (c) 2022, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import json
import pickle

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist

from models.blip_nlvr import blip_nlvr

import utils
from utils import cosine_lr_schedule, warmup_lr_schedule
from data import create_dataset, create_sampler, create_loader

def train(model, data_loader, optimizer, epoch, device, config):
    # train
    model.train()  
    
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
    metric_logger.add_meter('loss', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))

    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50   
    step_size = 10
 
    for i,(image0, image1, text, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
  
        images = torch.cat([image0, image1], dim=0)
        images, targets = images.to(device), targets.to(device)   

        loss = model(images, text, targets=targets, train=True)    
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()    
               
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(loss=loss.item())  
        
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}    


@torch.no_grad()
def evaluate(model, data_loader, device, config):
    # test
    model.eval()
            
    metric_logger = utils.MetricLogger(delimiter="  ")

    header = 'Evaluation:'
    print_freq = 50

    for image0, image1, text, targets in metric_logger.log_every(data_loader, print_freq, header):
        images = torch.cat([image0, image1], dim=0)
        images, targets = images.to(device), targets.to(device)   
        
        prediction = model(images, text, targets=targets, train=False)  
 
        _, pred_class = prediction.max(1)
        accuracy = (targets==pred_class).sum() / targets.size(0)
        
        metric_logger.meters['acc'].update(accuracy.item(), n=image0.size(0))

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()

    print("Averaged stats:", metric_logger.global_avg())   
    return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}


        
def main(args, config):
    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True

    #### Dataset #### 
    print("Creating dataset")
    datasets = create_dataset('nlvr', config) 
    
    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()            
        samplers = create_sampler(datasets, [True,False,False], num_tasks, global_rank)
    else:
        samplers = [None, None, None]
    
    batch_size=[config['batch_size_train'],config['batch_size_test'],config['batch_size_test']]
    train_loader, val_loader, test_loader = create_loader(datasets,samplers,batch_size=batch_size,
                                                          num_workers=[4,4,4],is_trains=[True,False,False], 
                                                          collate_fns=[None,None,None])

    #### Model #### 
    print("Creating model")
    model = blip_nlvr(pretrained=config['pretrained'], image_size=config['image_size'], 
                         vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'])

    model = model.to(device)   
    
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module    
            
    optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])

    print("Start training")
    start_time = time.time()
    best = 0
    best_epoch = 0

    for epoch in range(0, config['max_epoch']):
        if not args.evaluate:
            if args.distributed:
                train_loader.sampler.set_epoch(epoch)
                
            cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
            
            train_stats = train(model, train_loader, optimizer, epoch,  device, config) 
            
        val_stats = evaluate(model, val_loader, device, config)
        test_stats = evaluate(model, test_loader, device, config)  
        
        if utils.is_main_process():  
            if args.evaluate:                
                log_stats = {**{f'val_{k}': v for k, v in val_stats.items()},
                             **{f'test_{k}': v for k, v in test_stats.items()},
                            }
                with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                    f.write(json.dumps(log_stats) + "\n")   
                
            else:       
                log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                             **{f'val_{k}': v for k, v in val_stats.items()},
                             **{f'test_{k}': v for k, v in test_stats.items()},
                             'epoch': epoch,
                            }

                if float(val_stats['acc'])>best:
                    save_obj = {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'config': config,
                        'epoch': epoch,
                    }
                    torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth')) 
                    best = float(val_stats['acc'])
                    best_epoch = epoch

                with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                    f.write(json.dumps(log_stats) + "\n")
        if args.evaluate:             
            break            
         
        dist.barrier()   
    
    if utils.is_main_process():   
        with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
            f.write("best epoch: %d"%best_epoch)      
            
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str)) 
        

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='./configs/nlvr.yaml')
    parser.add_argument('--output_dir', default='output/NLVR')
    parser.add_argument('--evaluate', action='store_true')      
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')    
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=True, type=bool)
    args = parser.parse_args()

    config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))    
    
    main(args, config)