Spaces:
Sleeping
Sleeping
File size: 1,538 Bytes
03449f0 7079bef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Optimized Loading: Load in half precision if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model and tokenizer
model_name = "Sephfox/A.I.R.R"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).to(device)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_length=200,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create Gradio chat interface
def chat_bot(user_input, history=[]):
bot_response = generate_response(user_input)
history.append((user_input, bot_response))
return history, history
with gr.Blocks() as demo:
gr.Markdown("# A.I.R.R Chatbot (Optimized)")
chatbot = gr.Chatbot(label="Chat with A.I.R.R")
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...")
state = gr.State([])
submit_button = gr.Button("Send")
submit_button.click(
fn=chat_bot,
inputs=[user_input, state],
outputs=[chatbot, state]
)
demo.launch() |