File size: 5,639 Bytes
e4f8fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import cv2
import numpy as np
from ultralytics import YOLO
import tensorflow as tf

class YoloLeNetOCR:
    def __init__(self,

                 yolo_model_path: str,

                 lenet_model_path: str,

                 image_size=(28, 28),

                 conf_threshold=0.25):
        # YOLO detector
        self.detector = YOLO(yolo_model_path)
        # LeNet CNN
        self.cnn = tf.keras.models.load_model(lenet_model_path)

        # Embedded class names and inverse map (no external pkl needed)
        class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'C', 'dot']
        self.inv_map = {i: label for i, label in enumerate(class_names)}

        # params
        self.image_size = image_size
        self.conf_threshold = conf_threshold

    def preprocess(self, crop: np.ndarray) -> np.ndarray:
        # Convert to grayscale for CNN
        gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)
        resized = cv2.resize(gray, self.image_size)
        normed = resized.astype(np.float32) / 255.0
        # CNN expects shape (1, H, W, 1)
        return normed.reshape(1, *self.image_size, 1)

    def ocr_image(self, image_path: str) -> str:
        # 1) Load as single-channel grayscale
        gray0 = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
        if gray0 is None:
            raise FileNotFoundError(f"Cannot read {image_path}")

        # 2) Convert to BGR by stacking gray into 3 channels
        img = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR)

        # 3) Detect boxes on the grayscale-derived BGR image
        res = self.detector.predict(source=img, verbose=False)[0]
        boxes = res.boxes.xyxy.cpu().numpy()
        confs = res.boxes.conf.cpu().numpy()
        classes = res.boxes.cls.cpu().numpy().astype(int) 
        boxes = boxes[confs >= self.conf_threshold]
        classes = classes[confs >= self.conf_threshold]
        if len(boxes) == 0:
            return ""

        # 4) Sort boxes left-to-right
        sort_idx = np.argsort(boxes[:, 0])
        boxes = boxes[sort_idx]
        classes = classes[sort_idx]
        digits = []

        for (x1, y1, x2, y2), cls_idx in zip(boxes, classes):
            x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
            crop = img[
                max(0, y1):min(img.shape[0], y2),
                max(0, x1):min(img.shape[1], x2)
            ]

            # If YOLO says it's a dot, just append "dot"
            if self.inv_map[cls_idx] == "dot":
                digits.append("dot")
            else:
                # 5) Preprocess and predict with LeNet
                inp = self.preprocess(crop)
                preds = self.cnn.predict(inp, verbose=0)
                idx = int(np.argmax(preds, axis=1)[0])
                digits.append(self.inv_map[idx])

        return "".join(digits)
    
    def process_dataset_folder(self, dataset_dir, output_file=None):
        """

        Process all images in a dataset directory and its subdirectories.

        

        Args:

            dataset_dir (str): Path to the dataset directory

            output_file (str): Optional path to save results to a text file

        

        Returns:

            dict: Dictionary mapping image paths to OCR results

        """
        results = {}
        processed = 0
        
        # Iterate through all subdirectories
        for root, _, files in os.walk(dataset_dir):
            for file in files:
                if file.lower().endswith(('.png', '.jpg', '.jpeg')):
                    image_path = os.path.join(root, file)
                    try:
                        ocr_result = self.ocr_image(image_path)
                        ocr_result = ocr_result.replace("dot", ".")
                        results[image_path] = ocr_result
                        processed += 1
                        
                        # Print progress
                        if processed % 100 == 0:
                            print(f"Processed {processed} images")
                            
                    except Exception as e:
                        print(f"Error processing {image_path}: {str(e)}")
        
        # Save results to file if specified
        if output_file:
            with open(output_file, 'w') as f:
                for img_path, result in results.items():
                    f.write(f"{img_path},{result}\n")
            print(f"Results saved to {output_file}")
            
        print(f"Total images processed: {processed}")
        return results

# Example usage
if __name__ == "__main__":
    ocr = YoloLeNetOCR(
        yolo_model_path="Models/res_detect_v4.pt",
        lenet_model_path="Models/lenet_res_v4.h5",
        conf_threshold=0.3
    )
    
    # Process the entire new_data/res folder
    results = ocr.process_dataset_folder(
        dataset_dir="new_data/res",
        output_file="ocr_results.csv"
    )
    
    # Print sample results
    print("\nSample results:")
    sample_count = 0
    for path, text in results.items():
        print(f"{path}: {text}")
        sample_count += 1
        if sample_count >= 5:
            break


# # -------------------
# # Example usage
# # -------------------
# if __name__ == "__main__":
#     ocr = YoloLeNetOCR(
#         yolo_model_path="Models/res_detect_v3.pt",
#         lenet_model_path="Models/lenet_res_v4.h5",
#         conf_threshold=0.3
#     )
#     result = ocr.ocr_image("new_data/res")
#     result = result.replace("dot", ".")
#     print("OCR result:", result)