File size: 10,690 Bytes
823eada
769b4b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d9b2f
769b4b8
 
 
 
 
 
 
 
 
 
 
 
a4d9b2f
769b4b8
 
a4d9b2f
769b4b8
 
 
 
 
 
a4d9b2f
769b4b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d9b2f
 
 
 
 
 
 
 
 
 
769b4b8
a4d9b2f
 
 
 
 
 
 
769b4b8
a4d9b2f
 
 
 
 
 
 
 
 
 
 
 
 
769b4b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823eada
769b4b8
 
 
 
 
 
 
823eada
769b4b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# это файл только с LoRA, без ControlNet и IpAdapter

import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

from peft import PeftModel, LoraConfig
import os

def get_lora_sd_pipeline(
    ckpt_dir='./lora_logos', 
    base_model_name_or_path=None, 
    dtype=torch.float16, 
    adapter_name="default"
    ):

    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
    
    if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
        config = LoraConfig.from_pretrained(text_encoder_sub_dir)
        base_model_name_or_path = config.base_model_name_or_path
    
    if base_model_name_or_path is None:
        raise ValueError("Please specify the base model name or path")
    
    pipe = DiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
    before_params = pipe.unet.parameters()
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
    pipe.unet.set_adapter(adapter_name)
    after_params = pipe.unet.parameters()
    print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
    
    if os.path.exists(text_encoder_sub_dir):
        pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
    
    if dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()
    
    return pipe

def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
    tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
    chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
    
    with torch.no_grad():
        embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
    
    return torch.cat(embeds, dim=1)

def align_embeddings(prompt_embeds, negative_prompt_embeds):
    max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
    return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
           torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))

device = "cuda" if torch.cuda.is_available() else "cpu"
#model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use
model_id_default = "sd-legacy/stable-diffusion-v1-5"
model_dropdown = ['stabilityai/sdxl-turbo', 'CompVis/stable-diffusion-v1-4', 'sd-legacy/stable-diffusion-v1-5'  ]

model_lora_default = "lora_pussinboots_logos"
model_lora_dropdown = ['lora_lady_and_cats_logos', 'lora_pussinboots_logos'  ]

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    randomize_seed,
    width=512,
    height=512,
    model_repo_id=model_id_default,
    seed=42,
    guidance_scale=7,
    num_inference_steps=20,
    model_lora_id=model_lora_default,
    lora_scale=0.5,
    progress=gr.Progress(track_tqdm=True),
    ):
        
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # убираем обновление pipe всегда
    #pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    #pipe = pipe.to(device)
    
    # добавляем обновление pipe по условию
    if model_repo_id != model_id_default:
        pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
    else:
        # добавляем lora
        #pipe = get_lora_sd_pipeline(ckpt_dir='./lora_lady_and_cats_logos', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)
        pipe = get_lora_sd_pipeline(ckpt_dir='./'+model_lora_id, base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
        print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
        print(f"LoRA scale applied: {lora_scale}")
        pipe.fuse_lora(lora_scale=lora_scale)


    # заменяем просто вызов pipe с промптом
    #image = pipe(
    #    prompt=prompt,
    #    negative_prompt=negative_prompt,
    #    guidance_scale=guidance_scale,
    #    num_inference_steps=num_inference_steps,
    #    width=width,
    #    height=height,
    #    generator=generator,
    #).images[0]
    
    
    # на вызов pipe с эмбеддингами
    params = {
        'prompt_embeds': prompt_embeds,
        'negative_prompt_embeds': negative_prompt_embeds,
        'guidance_scale': guidance_scale,
        'num_inference_steps': num_inference_steps,
        'width': width,
        'height': height,
        'generator': generator,
    }
    
    return pipe(**params).images[0], seed    

    # return image, seed


examples = [
    "Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
    "A cat is playing a song called ""About the Cat"" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.",
    "A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.",
    "A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image SemaSci Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
#            model_repo_id = gr.Text(
#                label="Model Id",
#                max_lines=1,
#                placeholder="Choose model",
#                visible=True,
#                value=model_repo_id,
#            )
            model_repo_id = gr.Dropdown(
                label="Model Id",
                choices=model_dropdown,
                info="Choose model",
                visible=True,
                allow_custom_value=True,
#                value=model_repo_id,
                value=model_id_default,
            )            
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=256,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=256,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,  # Replace with defaults that work for your model
                )
                
            with gr.Row():
                model_lora_id = gr.Dropdown(
                    label="Lora Id",
                    choices=model_lora_dropdown,
                    info="Choose LoRA model",
                    visible=True,
                    allow_custom_value=True,
                    value=model_lora_default,
                )            
            
                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=0.5,
                )                

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            randomize_seed,
            width,
            height,
            model_repo_id,
            seed,
            guidance_scale,
            num_inference_steps,
            model_lora_id,
            lora_scale,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()