File size: 4,600 Bytes
7823cea
e4617b7
7823cea
 
1194d1c
b78ec6d
36f95d9
 
9bc27e3
a36d980
8d88e43
a36d980
 
1194d1c
78e29c2
 
 
36f95d9
8d88e43
 
ae0535c
8d88e43
ae0535c
 
 
 
 
8d88e43
97364cf
59cebaf
97364cf
59cebaf
 
 
 
fff17ea
7823cea
78e29c2
 
 
36f95d9
e4617b7
36f95d9
7823cea
97364cf
e4617b7
8d88e43
 
 
e4617b7
9bc27e3
 
8d88e43
 
57ae169
8d88e43
 
 
 
 
 
9bc27e3
 
 
 
 
 
e4617b7
9bc27e3
8d88e43
e4617b7
9bc27e3
 
e4617b7
9bc27e3
8d88e43
ff6b580
e4617b7
8d88e43
97364cf
ff6b580
 
 
e4617b7
9bc27e3
e4617b7
7823cea
 
fff17ea
97364cf
7823cea
59cebaf
fff17ea
59cebaf
fff17ea
 
 
9bc27e3
 
ff6b580
 
7823cea
bf687e5
7823cea
fff17ea
 
 
 
bf687e5
7823cea
36f95d9
7823cea
bf687e5
7823cea
17df602
7823cea
d771ba3
7823cea
 
 
bf687e5
8d88e43
36f95d9
fff17ea
36f95d9
fff17ea
 
bf687e5
7823cea
 
bf687e5
f134081
7823cea
bf687e5
7823cea
36f95d9
bf687e5
8fed1b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
from PIL import Image, UnidentifiedImageError
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset, Image as HfImage
import os
import pickle
from pathlib import Path
import gc

# 🔐 Token automático (si es necesario)
HF_TOKEN = os.getenv("HF_TOKEN")

# 📁 Directorio para embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"

# ✅ Cargar dataset directamente desde Hugging Face Hub
dataset = load_dataset(
    "csv",
    data_files="metadata.csv",
    split="train",
    column_names=["image"]  # ✅ Forzar encabezado correcto
) 
print("✅ Primer item:", dataset[0])

dataset = dataset["train"].cast_column("image", HfImage())

# 🔄 Preprocesar imagen para Facenet
def preprocess_image(img: Image.Image) -> np.ndarray:
    img_rgb = img.convert("RGB")
    img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
    return np.array(img_resized)

# 📦 Construir base de datos de embeddings
def build_database():
    if EMBEDDINGS_FILE.exists():
        print("📂 Cargando embeddings desde el archivo...")
        with open(EMBEDDINGS_FILE, 'rb') as f:
            return pickle.load(f)

    print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
    database = []
    batch_size = 10

    for i in range(0, len(dataset), batch_size):
        batch = dataset[i:i + batch_size]
        print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")

        for j, item in enumerate(batch):
            try:
                if not isinstance(item, dict) or "image" not in item:
                    print(f"⚠️ Saltando item {i+j} - estructura inválida: {item}")
                    continue

                img = item["image"]
                if not isinstance(img, Image.Image):
                    print(f"⚠️ Saltando item {i+j} - no es imagen: {type(img)}")
                    continue

                img_processed = preprocess_image(img)
                embedding = DeepFace.represent(
                    img_path=img_processed,
                    model_name="Facenet",
                    enforce_detection=False
                )[0]["embedding"]

                database.append((f"image_{i+j}", img, embedding))
                print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")

                del img_processed
                gc.collect()

            except Exception as e:
                print(f"❌ Error al procesar imagen {i+j}: {str(e)}")
                continue

        # Guardar después de cada lote
        if database:
            print("💾 Guardando progreso...")
            with open(EMBEDDINGS_FILE, 'wb') as f:
                pickle.dump(database, f)

        gc.collect()

    return database

# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image: Image.Image):
    try:
        img_processed = preprocess_image(uploaded_image)
        query_embedding = DeepFace.represent(
            img_path=img_processed,
            model_name="Facenet",
            enforce_detection=False
        )[0]["embedding"]
        del img_processed
        gc.collect()
    except Exception as e:
        print(f"Error al procesar imagen de consulta: {str(e)}")
        return [], "⚠ No se detectó un rostro válido en la imagen."

    similarities = []
    for name, db_img, embedding in database:
        dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
        sim_score = 1 / (1 + dist)
        similarities.append((sim_score, name, db_img))

    similarities.sort(reverse=True)
    top_matches = similarities[:5]

    gallery_items = []
    text_summary = ""
    for sim, name, img in top_matches:
        caption = f"{name} - Similitud: {sim:.2f}"
        gallery_items.append((img, caption))
        text_summary += caption + "\n"

    return gallery_items, text_summary

# ⚙️ Iniciar la aplicación
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base de datos cargada con {len(database)} imágenes")

# 🎛️ Interfaz Gradio
demo = gr.Interface(
    fn=find_similar_faces,
    inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
    outputs=[
        gr.Gallery(label="📸 Rostros más similares"),
        gr.Textbox(label="🧠 Similitud", lines=6)
    ],
    title="🔍 Buscador de Rostros con DeepFace",
    description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/facial-recognition`)."
)

demo.launch()