File size: 20,891 Bytes
3a7ffad
ca41ad4
ded489b
3a7ffad
ca41ad4
 
 
 
ded489b
fa7a80c
ca41ad4
ded489b
 
 
3a7ffad
 
ded489b
 
3a7ffad
 
fa7a80c
ded489b
 
 
 
 
 
 
 
 
 
 
81e2ca1
 
 
 
 
ded489b
fa7a80c
ded489b
 
 
 
81e2ca1
ded489b
 
 
ca41ad4
 
 
ded489b
7d8644d
ded489b
ca41ad4
ded489b
 
ca41ad4
ded489b
 
 
ca41ad4
ded489b
 
ca41ad4
ded489b
ca41ad4
3a7ffad
 
 
 
 
 
 
 
 
 
 
ca41ad4
d6b54da
ca41ad4
3a7ffad
ca41ad4
d6b54da
 
 
 
ca41ad4
3a7ffad
 
 
ca41ad4
3a7ffad
ca41ad4
ded489b
 
d6b54da
ca41ad4
 
 
d6b54da
ca41ad4
ded489b
ca41ad4
0b07cd5
 
 
 
 
 
 
81e2ca1
0b07cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded489b
 
 
 
 
 
0b07cd5
ded489b
 
 
 
0b07cd5
ded489b
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ac89f
0b07cd5
 
 
 
 
 
ded489b
81e2ca1
0b07cd5
ca41ad4
ded489b
0b07cd5
ca41ad4
 
ded489b
7e7a0ef
d6b54da
d1ac89f
ca41ad4
3a7ffad
d1ac89f
 
 
ca41ad4
 
 
d6b54da
d1ac89f
 
 
 
 
 
 
 
 
81e2ca1
d1ac89f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7ffad
d1ac89f
 
 
 
 
 
ded489b
d1ac89f
 
ded489b
d1ac89f
 
ded489b
d1ac89f
 
 
 
ded489b
d1ac89f
 
 
 
ca41ad4
d1ac89f
d6b54da
d1ac89f
0b07cd5
d1ac89f
 
ca41ad4
d1ac89f
 
81e2ca1
 
 
 
 
d1ac89f
 
 
 
 
 
 
ca41ad4
 
d6b54da
 
 
ded489b
 
 
 
 
 
 
 
 
 
 
 
ca41ad4
ded489b
 
 
 
 
ca41ad4
ded489b
 
 
 
 
 
 
 
 
 
 
 
 
ca41ad4
d1ac89f
ca41ad4
 
 
 
 
 
ded489b
d6b54da
 
 
ca41ad4
 
 
 
d6b54da
ca41ad4
 
 
d6b54da
 
ca41ad4
 
 
d6b54da
 
ca41ad4
 
 
 
ded489b
ca41ad4
 
3a7ffad
d6b54da
 
ded489b
 
 
0b07cd5
 
 
 
 
 
ded489b
 
 
0b07cd5
ded489b
ca41ad4
 
 
ded489b
ca41ad4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os
import utils
import pickle
import numpy as np
import gradio as gr
import tensorflow as tf
import matplotlib.pyplot as plt
from ttictoc import tic,toc
from keras.models import load_model
from urllib.request import urlretrieve

'''--------------------------- Descarga de modelos ----------------------------'''

# 3D U-Net
if not os.path.exists("unet.h5"):  
    urlretrieve("https://dl.dropboxusercontent.com/s/ay5q8caqzlad7h5/unet.h5?dl=0", "unet.h5")

# Med3D
if not os.path.exists("resnet_50_23dataset.pth"):     
    urlretrieve("https://dl.dropboxusercontent.com/s/otxsgx3e31d5h9i/resnet_50_23dataset.pth?dl=0", "resnet_50_23dataset.pth")

# Clasificador de im谩gen SVM
if not os.path.exists("svm_model.pickle"): 
    urlretrieve("https://dl.dropboxusercontent.com/s/n3tb3r6oyf06xfx/svm_model.pickle?dl=0", "svm_model.pickle")
    
# Nivel de riesgo
if not os.path.exists("mlp_probabilidad.h5"):  
    urlretrieve("https://dl.dropboxusercontent.com/s/78fjlg374mvjygd/mlp_probabilidad.h5?dl=0", "mlp_probabilidad.h5")

# Scaler para scores
if not os.path.exists("scaler.pickle"): 
    urlretrieve("https://dl.dropboxusercontent.com/s/ow6pe4k45r3xkbl/scaler.pickle?dl=0", "scaler.pickle")
    
# Archivo de texto para reportes
if not os.path.exists("report.txt"): 
    urlretrieve("https://dl.dropboxusercontent.com/s/ycjpkd65rhlicxq/report.txt?dl=0", "report.txt")
    

path_3d_unet = 'unet.h5'
weight_path = 'resnet_50_23dataset.pth'
svm_path = "svm_model.pickle"
prob_model_path = "mlp_probabilidad.h5"
scaler_path = "scaler.pickle" 
report_path = "report.txt"

'''---------------------------- Carga de modelos ------------------------------'''
# 3D U-Net
with tf.device("cpu:0"):
    model_unet = utils.import_3d_unet(path_3d_unet)

# MedNet
device_ids = [0]
mednet_model = utils.create_mednet(weight_path, device_ids)

# SVM model
svm_model = pickle.load(open(svm_path, 'rb'))

# Nivel de riesgo
with tf.device("cpu:0"):
    prob_model = load_model(prob_model_path)

# Scaler
scaler = pickle.load(open(scaler_path, 'rb'))

'''-------------------------------- Funciones ---------------------------------'''
def load_img(file):
    sitk, array = utils.load_img(file.name)  
    
    # Redimenci贸n
    mri_image = np.transpose(array)
    mri_image = np.append(mri_image, np.zeros((192-mri_image.shape[0],256,256,)), axis=0)
    
    # Rotaci贸n
    mri_image = mri_image.astype(np.float32)
    mri_image = np.rot90(mri_image, axes=(1,2))
    
    return sitk, mri_image

def show_img(img, mri_slice, update):
    fig = plt.figure()
    plt.imshow(img[mri_slice,:,:], cmap='gray')
    
    if update == True:
        return fig, gr.update(visible=True), gr.update(visible=True)
    else:
        return fig

# def show_brain(brain, brain_slice):
#     fig = plt.figure()
#     plt.imshow(brain[brain_slice,:,:], cmap='gray')
    
#     return fig, gr.update(visible=True)

def process_img(img, brain_slice):
    # progress(None,desc="Processing...")
    
    with tf.device("cpu:0"):
        brain = utils.brain_stripping(img, model_unet)
        
        fig, update_slider, _ = show_img(brain, brain_slice, update=True)
        
    return brain, fig, update_slider, gr.update(visible=True)

def save_file(input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
              input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
              input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
              input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
              input_medications, input_allergies,diagnosis):
    
    
    with open(report_path, 'w') as f:
            # Save Patient Data
            f.write("Patient data:\n")
            f.write(f"\tName: {input_name.capitalize()}\n")
            f.write(f"\tSex: {input_sex}\n")
            f.write(f"\tAge: {input_age}\n")
            f.write(f"\tPhone Number: {input_phone_num}\n")
            f.write(f"\tEmergency Contact Name: {input_emer_name.capitalize()}\n")
            f.write(f"\tEmergency Contact Phone Number: {input_emer_phone_num}\n\n")
    
            # Save Vital Signs
            f.write("Vital Signs:\n")
            f.write(f"\tDiastolic blood pressure: {input_Diastolic_blood_pressure} mm Hg\n")
            f.write(f"\tSystolic blood pressure: {input_Systolic_blood_pressure} mm Hg\n")
            f.write(f"\tBody height: {input_Body_heigth} cm\n")
            f.write(f"\tBody weight: {input_Body_weight} kg\n")
            f.write(f"\tHeart rate: {input_Heart_rate} bpm\n")
            f.write(f"\tRespiratory rate: {input_Respiratory_rate} bpm\n")
            f.write(f"\tBody temperature: {input_Body_temperature} 掳C\n")
            f.write(f"\tPulse oximetry: {input_Pluse_oximetry}%\n\n")
    
            # Save Medications
            f.write("Medications:\n")
            f.write(f"\tMedications: {input_medications}\n")
            f.write(f"\tAllergies: {input_allergies}\n\n")
            
            # Save clinical data
            f.write("Clinical data:\n")
            f.write(f"\tMMSE total score: {input_MMSE}\n")
            f.write(f"\tGDSCALE total score: {input_GDSCALE}\n")
            f.write(f"\tGlobal CDR: {input_CDR}\n")
            f.write(f"\tFAQ total score: {input_FAQ}\n")
            f.write(f"\tNPI-Q total score: {input_NPI_Q}\n")
                
            # Save Diagnosis
            f.write("Diagnosis:\n")
            f.write(f"\t{diagnosis}\n")

def get_diagnosis(brain_img, input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
                  input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
                  input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
                  input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
                  input_medications, input_allergies):
    
    # Extracci贸n de caracter铆sticas de imagen
    features = utils.get_features(brain_img, mednet_model)
    
    # Clasificaci贸n de imagen
    label_img = np.array([svm_model.predict(features)])
    
    if input_sex == "Male":
        sex_dum = 1
    else:
        sex_dum = 0
    
    scores = np.array([input_age, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, sex_dum, label_img])
    
    print(scores)
    
    # Normalizaci贸n de scores
    scores_norm = scaler.transform(scores.reshape(1,-1))
    
    print(scores_norm)
    
    with tf.device("cpu:0"):
        # Probabilidad de tener MCI
        prob = prob_model.predict(scores_norm)[0,0]
    
    # Probabilidad de tener MCI
    print(prob)
    diagnosis = f"The patient has a probability of {(100*prob):.2f}% of having MCI with a sensitivity of 92.00% and a specificity of 92.75%"
    
    save_file(input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
                  input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
                  input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
                  input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
                  input_medications, input_allergies,diagnosis)
    
    return gr.update(value=diagnosis), gr.update(value=report_path, visible=True), gr.update(visible=True)


def clear():
    return gr.File.update(value=None), gr.Plot.update(value=None), gr.update(visible=False), gr.Plot.update(value=None), gr.update(visible=False), gr.update(value="The diagnosis will show here..."), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


'''--------------------------------- Interfaz ---------------------------------'''

with gr.Blocks(theme=gr.themes.Base()) as demo:
    
    with gr.Row():
        # gr.HTML(r"""<center><img src='https://user-images.githubusercontent.com/66338785/233529518-33e8bcdb-146f-49e8-94c4-27d6529ce4f7.png' width="30%" height="30%"></center>""")
        gr.HTML(r"""
                <center><img src='https://user-images.githubusercontent.com/66338785/233531457-f368e04b-5099-42a8-906d-6f1250ea0f1e.png' width="40%" height="40%"></center>
                """)
    
    # Inputs
    with gr.Row():
        with gr.Column(variant="panel", scale=1):
            with gr.Tab("Patient Information"):  
                gr.Markdown('<h2 style="text-align: center; color:#235784;">Patient Information</h2>')
                with gr.Tab("Personal data"):
                    # Objeto para subir archivo nifti
                    input_name = gr.Textbox(placeholder='Enter the patient name', label='Patient name')
                    input_age = gr.Number(label='Age', value=None)
                    input_phone_num = gr.Number(label='Phone number')
                    input_emer_name = gr.Textbox(placeholder='Enter the emergency contact name', label='Emergency contact name')
                    input_emer_phone_num = gr.Number(label='Emergency contact name phone number', value=None)
                    input_sex = gr.Dropdown(["Male", "Female"], label="Sex", value="Male")
                    
                with gr.Tab("Clinical data"):
                    input_MMSE = gr.Slider(minimum=0,
                                           maximum=30,
                                           value=0,
                                           step=1,
                                           label="MMSE total score") 
                    
                    input_GDSCALE = gr.Slider(minimum=0,
                                           maximum=12,
                                           value=0,
                                           step=1,
                                           label="GDSCALE total score") 
                    
                    input_CDR = gr.Slider(minimum=0,
                                           maximum=3,
                                           value=0,
                                           step=0.5,
                                           label="Global CDR") 
                    
                    input_FAQ = gr.Slider(minimum=0,
                                           maximum=30,
                                           value=0,
                                           step=1,
                                           label="FAQ total score") 
                    
                    input_NPI_Q =  gr.Slider(minimum=0,
                                           maximum=30,
                                           value=0,
                                           step=1,
                                           label="NPI-Q total score") 
                          
                    
                with gr.Tab("Vital Signs"):
                    input_Diastolic_blood_pressure = gr.Number(label='Diastolic Blood Pressure(mm Hg)')
                    input_Systolic_blood_pressure = gr.Number(label='Systolic Blood Pressure(mm Hg)')
                    input_Body_heigth = gr.Number(label='Body heigth (cm)')
                    input_Body_weight = gr.Number(label='Body weigth (kg)')
                    input_Heart_rate = gr.Number(label='Heart rate (bpm)')
                    input_Respiratory_rate = gr.Number(label='Respiratory rate (bpm)')
                    input_Body_temperature = gr.Number(label='Body temperature (掳C)')
                    input_Pluse_oximetry = gr.Number(label='Pluse oximetry (%)')
                    
                with gr.Tab("Medications"):
                    input_medications = gr.Textbox(label='Medications', lines=5)
                    input_allergies = gr.Textbox(label='Allergies', lines=5)
                    
                with gr.Box():
                    gr.Markdown('<h4 style="color:#235784;">Upload MRI</h4>')             
                    input_file = gr.File(file_count="single", label="MRI File (.nii)", file_types=[".nii"], show_label=False)
                
                with gr.Row():
                    # Bot贸n para cargar imagen
                    load_img_button = gr.Button(value="Load")
                    
                    # Bot贸n para borrar
                    clear_button = gr.Button(value="Clear")
                
                # Bot贸n para procesar imagen
                process_button = gr.Button(value="Process MRI", visible=False, variant="primary")
                
                # Bot贸n para obtener diagnostico
                diagnostic_button = gr.Button(value="Get diagnosis", visible=False, variant="primary")
                
                with gr.Box(visible=False) as download_box:
                    gr.Markdown('<h4 style="color:#235784;"> Download diagnosis report</h4>')  
                    # Descarga de archivo
                    output_file = gr.File(file_count="single", show_label=False, interactive=False, visible=True)
                
            with gr.Tab("About"):  
                gr.Markdown('''
                # SIMCI
                Alzheimer is a degenerative and irreversible neurological disorder that affects cognitive abilities and daily activities. It is divided into three stages: preclinical, mild cognitive impairment (MCI), and dementia. MCI represents a transition to dementia, characterized by a greater-than-expected decline in cognitive function without interference in daily activities. It is estimated that approximately 20% of individuals with MCI progress to dementia, but diagnostic errors are common in this early stage due to ambiguous cognitive changes, including those observed in neuroimaging.
                
                SIMCI is a system for detecting mild cognitive impairment that employs a multimodal approach and a stratification process to address this issue. The system utilizes demographic characteristics and clinical test results to provide medical interpretability and assist specialists in decision-making. The database includes magnetic resonance imaging (MRI) brain scans, clinical examination results, and demographic information. SIMCI achieves an F1-score of 0.9233, a sensitivity of 0.9200, and a specificity of 0.9275.
                
                <center><img src='https://github.com/SebastianBravo/Battery_monitoring_system/assets/66338785/64cd8821-8249-4020-a00d-a6ae5a7a7e53' width="80%" height="80%"></center>
                
                ## Repository 
                https://github.com/SebastianBravo/SIMCI
                
                ## Authors
                
                 - Daniel Stiven Zambrano Acosta, <span>B.Sc</span>
                 - Juan Sebasti谩n Bravo Santacruz, <span>B.Sc</span>
                 - Ing. Wilson Javier Arenas L贸pez, <span>M.Sc</span>
                 - Psy. Pablo Alexander Reyes Gavilan, PhD
                 - Ing. Miguel Alfonso Altuve, PhD
                
                
                ## Acknowledgement
                
                 - Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer鈥檚 Association; Alzheimer鈥檚 Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer鈥檚 Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
                 - We thank [MedicalNet](https://github.com/Tencent/MedicalNet) and [segmentation_models_3D](https://github.com/ZFTurbo/segmentation_models_3D) which we build SIMCI.
                ''')
    
        # Outputs 
        with gr.Column(variant="panel", scale=1):
            gr.Markdown('<h2 style="text-align: center; color:#235784;">MRI visualization</h2>')
            
            with gr.Box():
                gr.Markdown('<h4 style="color:#235784;">Loaded MRI</h4>')
                # Plot para im谩gen original
                plot_img_original = gr.Plot(show_label=False)
                
                # Slider para im谩gen original
                mri_slider = gr.Slider(minimum=0,
                                       maximum=192,
                                       value=100,
                                       step=1,
                                       label="MRI Slice",
                                       visible=False) 
            
            with gr.Box():
                gr.Markdown('<h4 style="color:#235784;">Proccessed MRI</h4>')
                
                # Plot para im谩gen procesada
                plot_brain = gr.Plot(show_label=False, visible=True)
            
                # Slider para im谩gen procesada
                brain_slider = gr.Slider(minimum=0,
                                         maximum=192,
                                         value=100,
                                         step=1,
                                         label="MRI Slice",
                                         visible=False)
                
            with gr.Box():
                gr.Markdown('<h2 style="text-align: center; color:#235784;">Diagnosis</h2>')
                
                # Texto del diagnostico
                diagnosis_text = gr.Textbox(label="Diagnosis",interactive=False, placeholder="The diagnosis will show here...")
    
    
    
    # Variables
    original_input_sitk = gr.State()
    original_input_img = gr.State()
    brain_img = gr.State()
    
     
    update_true = gr.State(True)
    update_false = gr.State(False)
    
    # Cambios
    # Cargar imagen nueva
    input_file.change(load_img, 
                      input_file, 
                      [original_input_sitk, original_input_img])
    
    # Mostrar imagen nueva
    load_img_button.click(show_img, 
                          [original_input_img, mri_slider, update_true], 
                          [plot_img_original, mri_slider, process_button])
    
    # Actualizar imagen original
    mri_slider.change(show_img, 
                      [original_input_img, mri_slider, update_false], 
                      [plot_img_original])
    
    # Procesar imagen
    process_button.click(fn=process_img, 
                         inputs=[original_input_sitk, brain_slider], 
                         outputs=[brain_img,plot_brain,brain_slider, diagnostic_button])
    
    # Actualizar imagen procesada
    brain_slider.change(show_img,
                        [brain_img, brain_slider, update_false], 
                        [plot_brain])
    
    # Actualizar diagnostico
    diagnostic_button.click(fn=get_diagnosis, 
                            inputs=[brain_img, input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
                                    input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
                                    input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
                                    input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
                                    input_medications, input_allergies],
                            outputs=[diagnosis_text, output_file, download_box])
    
    # Limpiar campos
    clear_button.click(fn=clear, 
                       outputs=[input_file, plot_img_original, mri_slider, plot_brain, brain_slider, diagnosis_text, process_button, diagnostic_button, download_box])
    


if __name__ == "__main__":
    # demo.queue(concurrency_count=20)
    demo.launch()