Spaces:
Paused
Paused
File size: 20,891 Bytes
3a7ffad ca41ad4 ded489b 3a7ffad ca41ad4 ded489b fa7a80c ca41ad4 ded489b 3a7ffad ded489b 3a7ffad fa7a80c ded489b 81e2ca1 ded489b fa7a80c ded489b 81e2ca1 ded489b ca41ad4 ded489b 7d8644d ded489b ca41ad4 ded489b ca41ad4 ded489b ca41ad4 ded489b ca41ad4 ded489b ca41ad4 3a7ffad ca41ad4 d6b54da ca41ad4 3a7ffad ca41ad4 d6b54da ca41ad4 3a7ffad ca41ad4 3a7ffad ca41ad4 ded489b d6b54da ca41ad4 d6b54da ca41ad4 ded489b ca41ad4 0b07cd5 81e2ca1 0b07cd5 ded489b 0b07cd5 ded489b 0b07cd5 ded489b d1ac89f 0b07cd5 ded489b 81e2ca1 0b07cd5 ca41ad4 ded489b 0b07cd5 ca41ad4 ded489b 7e7a0ef d6b54da d1ac89f ca41ad4 3a7ffad d1ac89f ca41ad4 d6b54da d1ac89f 81e2ca1 d1ac89f 3a7ffad d1ac89f ded489b d1ac89f ded489b d1ac89f ded489b d1ac89f ded489b d1ac89f ca41ad4 d1ac89f d6b54da d1ac89f 0b07cd5 d1ac89f ca41ad4 d1ac89f 81e2ca1 d1ac89f ca41ad4 d6b54da ded489b ca41ad4 ded489b ca41ad4 ded489b ca41ad4 d1ac89f ca41ad4 ded489b d6b54da ca41ad4 d6b54da ca41ad4 d6b54da ca41ad4 d6b54da ca41ad4 ded489b ca41ad4 3a7ffad d6b54da ded489b 0b07cd5 ded489b 0b07cd5 ded489b ca41ad4 ded489b ca41ad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import os
import utils
import pickle
import numpy as np
import gradio as gr
import tensorflow as tf
import matplotlib.pyplot as plt
from ttictoc import tic,toc
from keras.models import load_model
from urllib.request import urlretrieve
'''--------------------------- Descarga de modelos ----------------------------'''
# 3D U-Net
if not os.path.exists("unet.h5"):
urlretrieve("https://dl.dropboxusercontent.com/s/ay5q8caqzlad7h5/unet.h5?dl=0", "unet.h5")
# Med3D
if not os.path.exists("resnet_50_23dataset.pth"):
urlretrieve("https://dl.dropboxusercontent.com/s/otxsgx3e31d5h9i/resnet_50_23dataset.pth?dl=0", "resnet_50_23dataset.pth")
# Clasificador de im谩gen SVM
if not os.path.exists("svm_model.pickle"):
urlretrieve("https://dl.dropboxusercontent.com/s/n3tb3r6oyf06xfx/svm_model.pickle?dl=0", "svm_model.pickle")
# Nivel de riesgo
if not os.path.exists("mlp_probabilidad.h5"):
urlretrieve("https://dl.dropboxusercontent.com/s/78fjlg374mvjygd/mlp_probabilidad.h5?dl=0", "mlp_probabilidad.h5")
# Scaler para scores
if not os.path.exists("scaler.pickle"):
urlretrieve("https://dl.dropboxusercontent.com/s/ow6pe4k45r3xkbl/scaler.pickle?dl=0", "scaler.pickle")
# Archivo de texto para reportes
if not os.path.exists("report.txt"):
urlretrieve("https://dl.dropboxusercontent.com/s/ycjpkd65rhlicxq/report.txt?dl=0", "report.txt")
path_3d_unet = 'unet.h5'
weight_path = 'resnet_50_23dataset.pth'
svm_path = "svm_model.pickle"
prob_model_path = "mlp_probabilidad.h5"
scaler_path = "scaler.pickle"
report_path = "report.txt"
'''---------------------------- Carga de modelos ------------------------------'''
# 3D U-Net
with tf.device("cpu:0"):
model_unet = utils.import_3d_unet(path_3d_unet)
# MedNet
device_ids = [0]
mednet_model = utils.create_mednet(weight_path, device_ids)
# SVM model
svm_model = pickle.load(open(svm_path, 'rb'))
# Nivel de riesgo
with tf.device("cpu:0"):
prob_model = load_model(prob_model_path)
# Scaler
scaler = pickle.load(open(scaler_path, 'rb'))
'''-------------------------------- Funciones ---------------------------------'''
def load_img(file):
sitk, array = utils.load_img(file.name)
# Redimenci贸n
mri_image = np.transpose(array)
mri_image = np.append(mri_image, np.zeros((192-mri_image.shape[0],256,256,)), axis=0)
# Rotaci贸n
mri_image = mri_image.astype(np.float32)
mri_image = np.rot90(mri_image, axes=(1,2))
return sitk, mri_image
def show_img(img, mri_slice, update):
fig = plt.figure()
plt.imshow(img[mri_slice,:,:], cmap='gray')
if update == True:
return fig, gr.update(visible=True), gr.update(visible=True)
else:
return fig
# def show_brain(brain, brain_slice):
# fig = plt.figure()
# plt.imshow(brain[brain_slice,:,:], cmap='gray')
# return fig, gr.update(visible=True)
def process_img(img, brain_slice):
# progress(None,desc="Processing...")
with tf.device("cpu:0"):
brain = utils.brain_stripping(img, model_unet)
fig, update_slider, _ = show_img(brain, brain_slice, update=True)
return brain, fig, update_slider, gr.update(visible=True)
def save_file(input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
input_medications, input_allergies,diagnosis):
with open(report_path, 'w') as f:
# Save Patient Data
f.write("Patient data:\n")
f.write(f"\tName: {input_name.capitalize()}\n")
f.write(f"\tSex: {input_sex}\n")
f.write(f"\tAge: {input_age}\n")
f.write(f"\tPhone Number: {input_phone_num}\n")
f.write(f"\tEmergency Contact Name: {input_emer_name.capitalize()}\n")
f.write(f"\tEmergency Contact Phone Number: {input_emer_phone_num}\n\n")
# Save Vital Signs
f.write("Vital Signs:\n")
f.write(f"\tDiastolic blood pressure: {input_Diastolic_blood_pressure} mm Hg\n")
f.write(f"\tSystolic blood pressure: {input_Systolic_blood_pressure} mm Hg\n")
f.write(f"\tBody height: {input_Body_heigth} cm\n")
f.write(f"\tBody weight: {input_Body_weight} kg\n")
f.write(f"\tHeart rate: {input_Heart_rate} bpm\n")
f.write(f"\tRespiratory rate: {input_Respiratory_rate} bpm\n")
f.write(f"\tBody temperature: {input_Body_temperature} 掳C\n")
f.write(f"\tPulse oximetry: {input_Pluse_oximetry}%\n\n")
# Save Medications
f.write("Medications:\n")
f.write(f"\tMedications: {input_medications}\n")
f.write(f"\tAllergies: {input_allergies}\n\n")
# Save clinical data
f.write("Clinical data:\n")
f.write(f"\tMMSE total score: {input_MMSE}\n")
f.write(f"\tGDSCALE total score: {input_GDSCALE}\n")
f.write(f"\tGlobal CDR: {input_CDR}\n")
f.write(f"\tFAQ total score: {input_FAQ}\n")
f.write(f"\tNPI-Q total score: {input_NPI_Q}\n")
# Save Diagnosis
f.write("Diagnosis:\n")
f.write(f"\t{diagnosis}\n")
def get_diagnosis(brain_img, input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
input_medications, input_allergies):
# Extracci贸n de caracter铆sticas de imagen
features = utils.get_features(brain_img, mednet_model)
# Clasificaci贸n de imagen
label_img = np.array([svm_model.predict(features)])
if input_sex == "Male":
sex_dum = 1
else:
sex_dum = 0
scores = np.array([input_age, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, sex_dum, label_img])
print(scores)
# Normalizaci贸n de scores
scores_norm = scaler.transform(scores.reshape(1,-1))
print(scores_norm)
with tf.device("cpu:0"):
# Probabilidad de tener MCI
prob = prob_model.predict(scores_norm)[0,0]
# Probabilidad de tener MCI
print(prob)
diagnosis = f"The patient has a probability of {(100*prob):.2f}% of having MCI with a sensitivity of 92.00% and a specificity of 92.75%"
save_file(input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
input_medications, input_allergies,diagnosis)
return gr.update(value=diagnosis), gr.update(value=report_path, visible=True), gr.update(visible=True)
def clear():
return gr.File.update(value=None), gr.Plot.update(value=None), gr.update(visible=False), gr.Plot.update(value=None), gr.update(visible=False), gr.update(value="The diagnosis will show here..."), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
'''--------------------------------- Interfaz ---------------------------------'''
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
# gr.HTML(r"""<center><img src='https://user-images.githubusercontent.com/66338785/233529518-33e8bcdb-146f-49e8-94c4-27d6529ce4f7.png' width="30%" height="30%"></center>""")
gr.HTML(r"""
<center><img src='https://user-images.githubusercontent.com/66338785/233531457-f368e04b-5099-42a8-906d-6f1250ea0f1e.png' width="40%" height="40%"></center>
""")
# Inputs
with gr.Row():
with gr.Column(variant="panel", scale=1):
with gr.Tab("Patient Information"):
gr.Markdown('<h2 style="text-align: center; color:#235784;">Patient Information</h2>')
with gr.Tab("Personal data"):
# Objeto para subir archivo nifti
input_name = gr.Textbox(placeholder='Enter the patient name', label='Patient name')
input_age = gr.Number(label='Age', value=None)
input_phone_num = gr.Number(label='Phone number')
input_emer_name = gr.Textbox(placeholder='Enter the emergency contact name', label='Emergency contact name')
input_emer_phone_num = gr.Number(label='Emergency contact name phone number', value=None)
input_sex = gr.Dropdown(["Male", "Female"], label="Sex", value="Male")
with gr.Tab("Clinical data"):
input_MMSE = gr.Slider(minimum=0,
maximum=30,
value=0,
step=1,
label="MMSE total score")
input_GDSCALE = gr.Slider(minimum=0,
maximum=12,
value=0,
step=1,
label="GDSCALE total score")
input_CDR = gr.Slider(minimum=0,
maximum=3,
value=0,
step=0.5,
label="Global CDR")
input_FAQ = gr.Slider(minimum=0,
maximum=30,
value=0,
step=1,
label="FAQ total score")
input_NPI_Q = gr.Slider(minimum=0,
maximum=30,
value=0,
step=1,
label="NPI-Q total score")
with gr.Tab("Vital Signs"):
input_Diastolic_blood_pressure = gr.Number(label='Diastolic Blood Pressure(mm Hg)')
input_Systolic_blood_pressure = gr.Number(label='Systolic Blood Pressure(mm Hg)')
input_Body_heigth = gr.Number(label='Body heigth (cm)')
input_Body_weight = gr.Number(label='Body weigth (kg)')
input_Heart_rate = gr.Number(label='Heart rate (bpm)')
input_Respiratory_rate = gr.Number(label='Respiratory rate (bpm)')
input_Body_temperature = gr.Number(label='Body temperature (掳C)')
input_Pluse_oximetry = gr.Number(label='Pluse oximetry (%)')
with gr.Tab("Medications"):
input_medications = gr.Textbox(label='Medications', lines=5)
input_allergies = gr.Textbox(label='Allergies', lines=5)
with gr.Box():
gr.Markdown('<h4 style="color:#235784;">Upload MRI</h4>')
input_file = gr.File(file_count="single", label="MRI File (.nii)", file_types=[".nii"], show_label=False)
with gr.Row():
# Bot贸n para cargar imagen
load_img_button = gr.Button(value="Load")
# Bot贸n para borrar
clear_button = gr.Button(value="Clear")
# Bot贸n para procesar imagen
process_button = gr.Button(value="Process MRI", visible=False, variant="primary")
# Bot贸n para obtener diagnostico
diagnostic_button = gr.Button(value="Get diagnosis", visible=False, variant="primary")
with gr.Box(visible=False) as download_box:
gr.Markdown('<h4 style="color:#235784;"> Download diagnosis report</h4>')
# Descarga de archivo
output_file = gr.File(file_count="single", show_label=False, interactive=False, visible=True)
with gr.Tab("About"):
gr.Markdown('''
# SIMCI
Alzheimer is a degenerative and irreversible neurological disorder that affects cognitive abilities and daily activities. It is divided into three stages: preclinical, mild cognitive impairment (MCI), and dementia. MCI represents a transition to dementia, characterized by a greater-than-expected decline in cognitive function without interference in daily activities. It is estimated that approximately 20% of individuals with MCI progress to dementia, but diagnostic errors are common in this early stage due to ambiguous cognitive changes, including those observed in neuroimaging.
SIMCI is a system for detecting mild cognitive impairment that employs a multimodal approach and a stratification process to address this issue. The system utilizes demographic characteristics and clinical test results to provide medical interpretability and assist specialists in decision-making. The database includes magnetic resonance imaging (MRI) brain scans, clinical examination results, and demographic information. SIMCI achieves an F1-score of 0.9233, a sensitivity of 0.9200, and a specificity of 0.9275.
<center><img src='https://github.com/SebastianBravo/Battery_monitoring_system/assets/66338785/64cd8821-8249-4020-a00d-a6ae5a7a7e53' width="80%" height="80%"></center>
## Repository
https://github.com/SebastianBravo/SIMCI
## Authors
- Daniel Stiven Zambrano Acosta, <span>B.Sc</span>
- Juan Sebasti谩n Bravo Santacruz, <span>B.Sc</span>
- Ing. Wilson Javier Arenas L贸pez, <span>M.Sc</span>
- Psy. Pablo Alexander Reyes Gavilan, PhD
- Ing. Miguel Alfonso Altuve, PhD
## Acknowledgement
- Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer鈥檚 Association; Alzheimer鈥檚 Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer鈥檚 Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
- We thank [MedicalNet](https://github.com/Tencent/MedicalNet) and [segmentation_models_3D](https://github.com/ZFTurbo/segmentation_models_3D) which we build SIMCI.
''')
# Outputs
with gr.Column(variant="panel", scale=1):
gr.Markdown('<h2 style="text-align: center; color:#235784;">MRI visualization</h2>')
with gr.Box():
gr.Markdown('<h4 style="color:#235784;">Loaded MRI</h4>')
# Plot para im谩gen original
plot_img_original = gr.Plot(show_label=False)
# Slider para im谩gen original
mri_slider = gr.Slider(minimum=0,
maximum=192,
value=100,
step=1,
label="MRI Slice",
visible=False)
with gr.Box():
gr.Markdown('<h4 style="color:#235784;">Proccessed MRI</h4>')
# Plot para im谩gen procesada
plot_brain = gr.Plot(show_label=False, visible=True)
# Slider para im谩gen procesada
brain_slider = gr.Slider(minimum=0,
maximum=192,
value=100,
step=1,
label="MRI Slice",
visible=False)
with gr.Box():
gr.Markdown('<h2 style="text-align: center; color:#235784;">Diagnosis</h2>')
# Texto del diagnostico
diagnosis_text = gr.Textbox(label="Diagnosis",interactive=False, placeholder="The diagnosis will show here...")
# Variables
original_input_sitk = gr.State()
original_input_img = gr.State()
brain_img = gr.State()
update_true = gr.State(True)
update_false = gr.State(False)
# Cambios
# Cargar imagen nueva
input_file.change(load_img,
input_file,
[original_input_sitk, original_input_img])
# Mostrar imagen nueva
load_img_button.click(show_img,
[original_input_img, mri_slider, update_true],
[plot_img_original, mri_slider, process_button])
# Actualizar imagen original
mri_slider.change(show_img,
[original_input_img, mri_slider, update_false],
[plot_img_original])
# Procesar imagen
process_button.click(fn=process_img,
inputs=[original_input_sitk, brain_slider],
outputs=[brain_img,plot_brain,brain_slider, diagnostic_button])
# Actualizar imagen procesada
brain_slider.change(show_img,
[brain_img, brain_slider, update_false],
[plot_brain])
# Actualizar diagnostico
diagnostic_button.click(fn=get_diagnosis,
inputs=[brain_img, input_name, input_age, input_phone_num, input_emer_name, input_emer_phone_num,
input_sex, input_MMSE, input_GDSCALE, input_CDR, input_FAQ, input_NPI_Q, input_Diastolic_blood_pressure,
input_Systolic_blood_pressure, input_Body_heigth, input_Body_weight, input_Heart_rate,
input_Respiratory_rate, input_Body_temperature, input_Pluse_oximetry,
input_medications, input_allergies],
outputs=[diagnosis_text, output_file, download_box])
# Limpiar campos
clear_button.click(fn=clear,
outputs=[input_file, plot_img_original, mri_slider, plot_brain, brain_slider, diagnosis_text, process_button, diagnostic_button, download_box])
if __name__ == "__main__":
# demo.queue(concurrency_count=20)
demo.launch()
|