File size: 6,641 Bytes
b74625d
 
 
 
 
00506cc
 
b74625d
 
 
 
4bb2e87
 
 
 
b74625d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ea628
 
 
b74625d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import torch
from torch import nn
import torchvision.transforms as T

from linea.models import build_linea
from linea.util.slconfig import DictAction, SLConfig

from PIL import Image, ImageDraw

LINEA_MODELS = {
    "LINEA-N": './linea/configs/linea/linea_hgnetv2_n.py',
    "LINEA-S": './linea/configs/linea/linea_hgnetv2_s.py',
    "LINEA-M": './linea/configs/linea/linea_hgnetv2_m.py',
    "LINEA-L": './linea/configs/linea/linea_hgnetv2_l.py'
}

transforms = T.Compose(
        [
            T.Resize((640, 640)),
            T.ToTensor(),
            T.Normalize(mean=[0.538, 0.494, 0.453], std=[0.257, 0.263, 0.273]),
        ]
    )

example_images = [
    ["assets/example1.jpg"],
    ["assets/example2.jpg"],
    ["assets/example3.jpg"],
    ["assets/example4.jpg"],
]

description = """
<h1 align="center">
  <ins>LINEA</ins>
  <br>
  Fast and accurate line detection using scalable transformers
</h1>

<h2 align="center">
<a href="https://www.linkedin.com/in/sebastianjr/">Sebastian Janampa</a> 
and 
<a href="https://www.linkedin.com/in/marios-pattichis-207b0119/">Marios Pattichis</a>
</h2>

<h2 align="center">  
    <a href="https://github.com/SebastianJanampa/LINEA.git">GitHub</a> |
    <a href="https://colab.research.google.com/github/SebastianJanampa/LINEA/blob/master/LINEA_tutorial.ipynb">Colab</a>
</h2>


## Getting Started

LINEA is a family of transformers models that detectes the line segments on an image. 
Its key component is its new attention mechanism called **line attention**.

To get started, upload an image or select one of the examples below. 
You can choose between different model size, change the confidence threshold and visualize the results.
"""

def create_model(model_size):
    cfg = SLConfig.fromfile(LINEA_MODELS[model_size])
    cfg.pretrained = False

    model, postprocessor = build_linea(cfg)

    letter = model_size[-1].lower()
    url = f"https://github.com/SebastianJanampa/storage/releases/download/LINEA/linea_hgnetv2_{letter}.pth"
    state_dict = torch.hub.load_state_dict_from_url(
            url, map_location="cpu", file_name=f"linea_hgnetv2_{letter}.pth"
        )

    model.load_state_dict(state_dict['model'], strict=True)

    class Model(nn.Module):
      def __init__(self):
        super().__init__()
        self.model = model.deploy()
        self.postprocessor = postprocessor.deploy()

      def forward(self, images, orig_target_sizes):
        outputs = self.model(images)
        outputs = self.postprocessor(outputs, orig_target_sizes)
        return outputs

    model = Model()
    model.eval()

    return model

def draw(images, lines, scores, thrh):
    for i, im in enumerate(images):
        draw = ImageDraw.Draw(im)

        scr = scores[i]
        line = lines[i][scr > thrh]
        scrs = scr[scr > thrh]

        for j, l in enumerate(line):
            draw.line(list(l), fill="red", width=5)
            draw.text(
                (l[0], l[1]),
                text=f"{round(scrs[j].item(), 2)}",
                fill="blue",
            )

    return images

def filter(lines, scores, threshold):
    filtered_lines, filter_scores = [], []
    for line, scr in zip(lines, scores):
        idx = scr > threshold
        filtered_lines.append(line[idx])
        filter_scores.append(scr[idx])
    return filtered_lines, filter_scores

def format_output(lines, scores):
    n = len(lines[0])

    txt = f"{n} lines were detected\n"
    txt += "Detected lines:\n"
    for line, scr in zip(lines[0], scores[0]):
        txt += f"\tx1: {line[0].item():.2f}"
        txt += f"\ty1: {line[1].item():.2f}"
        txt += f"\tx2: {line[2].item():.2f}"
        txt += f"\ty2: {line[3].item():.2f}"
        txt += f"\tscore: {scr.item():.2f}\n"
    return txt

def process_results(
    image_path,
    model_size, 
    threshold
    ):
    """ Process the image an returns the detected lines """
    if image_path is None:
        raise gr.Error("Please upload an image first.")

    model = create_model(model_size)

    im_pil = Image.open(image_path).convert("RGB")
    w, h = im_pil.size
    orig_size = torch.tensor([[w, h]])

    im_data = transforms(im_pil).unsqueeze(0)

    output = model(im_data, orig_size)
    lines, scores = output

    result_images = draw([im_pil], lines, scores, thrh=threshold)
    filtered_lines, filtered_scores = filter(lines, scores, threshold)

    return format_output(filtered_lines, filtered_scores), result_images[0], (lines, scores)

def update_threshold(
    image_path, 
    raw_results,
    threshold
    ):
    lines, scores = raw_results
    im_pil = Image.open(image_path).convert("RGB")

    result_images = draw([im_pil], lines, scores, thrh=threshold)
    filtered_lines, filtered_scores = filter(lines, scores, threshold)
    return format_output(filtered_lines, filtered_scores), result_images[0]

def update_model(
    image_path,
    model_size, 
    threshold
    ):
    create_model(model_size)

    if image_path is None:
        raise gr.Error("Please upload an image first.")
        return None, None, None

    return process_results(image_path, model_size, threshold)


# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(description)
    with gr.Row():
        with gr.Column():
            gr.Markdown("""## Input Image""")
            image_path = gr.Image(label="Upload image", type="filepath")
            model_size = gr.Dropdown(
                choices=list(LINEA_MODELS.keys()), label="Choose a LINEA model.", value="LINEA-M"
            )
            threshold = gr.Slider(
                label="Confidence Threshold",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                interactive=True,
                value=0.30,
            )

            submit_btn = gr.Button("Detect Lines")
            gr.Examples(examples=example_images, inputs=[image_path, model_size])

        with gr.Column():
            gr.Markdown("""## Results""")
            image_output = gr.Image(label="Detected Lines")

            text_output = gr.Textbox(label="Predicted lines", type="text", lines=5)

    # Define the action when the button is clicked
    raw_results = gr.State()

    plot_inputs = [
        raw_results,
        threshold
    ]

    submit_btn.click(
        fn=process_results,
        inputs=[image_path, model_size] + plot_inputs[1:],
        outputs=[text_output, image_output, raw_results],
    )

    # Define the action when the plot checkboxes are clicked
    threshold.change(fn=update_threshold, inputs=[image_path] + plot_inputs, outputs=[text_output, image_output])
demo.launch()