File size: 25,462 Bytes
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be06e3c
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be06e3c
 
 
 
 
 
 
 
8889bbb
be06e3c
 
 
 
 
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be06e3c
 
 
 
 
 
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be06e3c
 
 
 
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be06e3c
 
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator

from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from gradio.themes import ThemeClass as Theme

from .base_demo import register_demo, get_demo_class, BaseDemo

import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast

import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document

from gradio.blocks import Blocks
from gradio.components import (
    Button,
    Chatbot,
    Component,
    Markdown,
    State,
    Textbox,
    get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples  # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration


from ..globals import MODEL_ENGINE, RAG_CURRENT_FILE, RAG_EMBED, load_embeddings, get_rag_embeddings

from .chat_interface import (
    SYSTEM_PROMPT,
    MODEL_NAME,
    MAX_TOKENS,
    TEMPERATURE,
    CHAT_EXAMPLES,
    gradio_history_to_openai_conversations,
    gradio_history_to_conversation_prompt,
    DATETIME_FORMAT,
    get_datetime_string,
    format_conversation,
    chat_response_stream_multiturn_engine,
    ChatInterfaceDemo,
    CustomizedChatInterface,
)

from ..configs import (
    CHUNK_SIZE,
    CHUNK_OVERLAP,
    RAG_EMBED_MODEL_NAME,
    CHATBOT_HEIGHT,
    USE_PANEL,
)

RAG_CURRENT_VECTORSTORE = None


def load_document_split_vectorstore(file_path):
    global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
    from langchain.text_splitter import RecursiveCharacterTextSplitter
    from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
    from langchain_community.vectorstores import Chroma, FAISS
    from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
    splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
    if file_path.endswith('.pdf'):
        loader = PyPDFLoader(file_path)
    elif file_path.endswith('.docx'):
        loader = Docx2txtLoader(file_path)
    elif file_path.endswith('.txt'):
        loader = TextLoader(file_path)
    splits = loader.load_and_split(splitter)
    RAG_CURRENT_VECTORSTORE = FAISS.from_texts(texts=[s.page_content for s in splits], embedding=get_rag_embeddings())
    return RAG_CURRENT_VECTORSTORE

def docs_to_context_content(docs: List[Any]):
    content = "\n".join([d.page_content for d in docs])
    return content


DOC_TEMPLATE = """###
{content}
###

"""

DOC_INSTRUCTION = """Answer the following query exclusively based on the information provided in the document above. \
If the information is not found, please say so instead of making up facts! Remember to answer the question in the same language as the user query!
"""


def docs_to_rag_context(docs: List[Any], doc_instruction=None):
    doc_instruction = doc_instruction or DOC_INSTRUCTION
    content = docs_to_context_content(docs)
    context = doc_instruction.strip() + "\n" + DOC_TEMPLATE.format(content=content)
    return context


def maybe_get_doc_context(message, file_input, rag_num_docs: Optional[int] = 3):
    doc_context = None
    if file_input is not None:
        if file_input == RAG_CURRENT_FILE:
            # reuse
            vectorstore = RAG_CURRENT_VECTORSTORE
            print(f'Reuse vectorstore: {file_input}')
        else:
            vectorstore = load_document_split_vectorstore(file_input)
            print(f'New vectorstore: {RAG_CURRENT_FILE} {file_input}')
            RAG_CURRENT_FILE = file_input
        docs = vectorstore.similarity_search(message, k=rag_num_docs)
        doc_context = docs_to_rag_context(docs)
    return doc_context


def chat_response_stream_multiturn_doc_engine(
    message: str, 
    history: List[Tuple[str, str]], 
    file_input: Optional[str] = None,
    temperature: float = 0.7, 
    max_tokens: int = 1024, 
    system_prompt: Optional[str] = SYSTEM_PROMPT,
    rag_num_docs: Optional[int] = 3,
    doc_instruction: Optional[str] = DOC_INSTRUCTION,
    # profile: Optional[gr.OAuthProfile] = None,
):
    global MODEL_ENGINE, RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
    if len(message) == 0:
        raise gr.Error("The message cannot be empty!")
    
    rag_num_docs = int(rag_num_docs)
    doc_instruction = doc_instruction or DOC_INSTRUCTION
    doc_context = None
    if file_input is not None:
        if file_input == RAG_CURRENT_FILE:
            # reuse
            vectorstore = RAG_CURRENT_VECTORSTORE
            print(f'Reuse vectorstore: {file_input}')
        else:
            vectorstore = load_document_split_vectorstore(file_input)
            print(f'New vectorstore: {RAG_CURRENT_FILE} {file_input}')
            RAG_CURRENT_FILE = file_input
        docs = vectorstore.similarity_search(message, k=rag_num_docs)
        # doc_context = docs_to_rag_context(docs)
        rag_content = docs_to_context_content(docs)
        doc_context = doc_instruction.strip() + "\n" + DOC_TEMPLATE.format(content=rag_content)
    
    if doc_context is not None:
        message = f"{doc_context}\n\n{message}"
    
    for response, num_tokens in chat_response_stream_multiturn_engine(
        message, history, temperature, max_tokens, system_prompt
    ):
        # ! yield another content which is doc_context
        yield response, num_tokens, doc_context



class RagChatInterface(CustomizedChatInterface):
    def __init__(
            self, 
            fn: Callable[..., Any], 
            *, 
            chatbot: gr.Chatbot | None = None, 
            textbox: gr.Textbox | None = None, 
            additional_inputs: str | Component | list[str | Component] | None = None, 
            additional_inputs_accordion_name: str | None = None, 
            additional_inputs_accordion: str | gr.Accordion | None = None, 
            render_additional_inputs_fn: Callable | None = None,
            examples: list[str] | None = None, 
            cache_examples: bool | None = None, 
            title: str | None = None, 
            description: str | None = None, 
            theme: Theme | str | None = None, 
            css: str | None = None, 
            js: str | None = None, 
            head: str | None = None, 
            analytics_enabled: bool | None = None, 
            submit_btn: str | Button | None = "Submit", 
            stop_btn: str | Button | None = "Stop", 
            retry_btn: str | Button | None = "🔄  Retry", 
            undo_btn: str | Button | None = "↩️ Undo", 
            clear_btn: str | Button | None = "🗑️  Clear", 
            autofocus: bool = True, 
            concurrency_limit: int | Literal['default'] | None = "default", 
            fill_height: bool = True
        ):
        try:
            super(gr.ChatInterface, self).__init__(
                analytics_enabled=analytics_enabled,
                mode="chat_interface",
                css=css,
                title=title or "Gradio",
                theme=theme,
                js=js,
                head=head,
                fill_height=fill_height,
            )
        except Exception as e:
            # Handling some old gradio version with out fill_height
            super(gr.ChatInterface, self).__init__(
                analytics_enabled=analytics_enabled,
                mode="chat_interface",
                css=css,
                title=title or "Gradio",
                theme=theme,
                js=js,
                head=head,
                # fill_height=fill_height,
            )
        self.concurrency_limit = concurrency_limit
        self.fn = fn
        self.render_additional_inputs_fn = render_additional_inputs_fn
        self.is_async = inspect.iscoroutinefunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.is_generator = inspect.isgeneratorfunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.examples = examples
        if self.space_id and cache_examples is None:
            self.cache_examples = True
        else:
            self.cache_examples = cache_examples or False
        self.buttons: list[Button | None] = []

        if additional_inputs:
            if not isinstance(additional_inputs, list):
                additional_inputs = [additional_inputs]
            self.additional_inputs = [
                get_component_instance(i)
                for i in additional_inputs  # type: ignore
            ]
        else:
            self.additional_inputs = []
        if additional_inputs_accordion_name is not None:
            print(
                "The `additional_inputs_accordion_name` parameter is deprecated and will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead."
            )
            self.additional_inputs_accordion_params = {
                "label": additional_inputs_accordion_name
            }
        if additional_inputs_accordion is None:
            self.additional_inputs_accordion_params = {
                "label": "Additional Inputs",
                "open": False,
            }
        elif isinstance(additional_inputs_accordion, str):
            self.additional_inputs_accordion_params = {
                "label": additional_inputs_accordion
            }
        elif isinstance(additional_inputs_accordion, Accordion):
            self.additional_inputs_accordion_params = (
                additional_inputs_accordion.recover_kwargs(
                    additional_inputs_accordion.get_config()
                )
            )
        else:
            raise ValueError(
                f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {type(additional_inputs_accordion)}"
            )

        with self:
            if title:
                Markdown(
                    f"<h1 style='text-align: center; margin-bottom: 1rem'>{self.title}</h1>"
                )
            if description:
                Markdown(description)

            with Row():
                self.rag_content = gr.Textbox(
                    scale=1,
                    lines=4,
                    max_lines=16,
                    label='Retrieved RAG context',
                    placeholder="Rag context and instrution will show up here",
                    interactive=False
                )
                if chatbot:
                    self.chatbot = chatbot.render()
                else:
                    self.chatbot = Chatbot(
                        label="Chatbot", scale=3, height=200 if fill_height else None
                    )

            with Row():
                for btn in [retry_btn, undo_btn, clear_btn]:
                    if btn is not None:
                        if isinstance(btn, Button):
                            btn.render()
                        elif isinstance(btn, str):
                            btn = Button(btn, variant="secondary", size="sm")
                        else:
                            raise ValueError(
                                f"All the _btn parameters must be a gr.Button, string, or None, not {type(btn)}"
                            )
                    self.buttons.append(btn)  # type: ignore

            with Group():
                with Row():
                    if textbox:
                        textbox.container = False
                        textbox.show_label = False
                        textbox_ = textbox.render()
                        assert isinstance(textbox_, Textbox)
                        self.textbox = textbox_
                    else:
                        self.textbox = Textbox(
                            container=False,
                            show_label=False,
                            label="Message",
                            placeholder="Type a message...",
                            scale=7,
                            autofocus=autofocus,
                        )
                    if submit_btn is not None:
                        if isinstance(submit_btn, Button):
                            submit_btn.render()
                        elif isinstance(submit_btn, str):
                            submit_btn = Button(
                                submit_btn,
                                variant="primary",
                                scale=2,
                                min_width=150,
                            )
                        else:
                            raise ValueError(
                                f"The submit_btn parameter must be a gr.Button, string, or None, not {type(submit_btn)}"
                            )
                    if stop_btn is not None:
                        if isinstance(stop_btn, Button):
                            stop_btn.visible = False
                            stop_btn.render()
                        elif isinstance(stop_btn, str):
                            stop_btn = Button(
                                stop_btn,
                                variant="stop",
                                visible=False,
                                scale=2,
                                min_width=150,
                            )
                        else:
                            raise ValueError(
                                f"The stop_btn parameter must be a gr.Button, string, or None, not {type(stop_btn)}"
                            )
                    self.num_tokens = Textbox(
                            container=False,
                            label="num_tokens",
                            placeholder="0 tokens",
                            scale=1,
                            interactive=False,
                            # autofocus=autofocus,
                            min_width=10
                        )
                    self.buttons.extend([submit_btn, stop_btn])  # type: ignore
                
                self.fake_api_btn = Button("Fake API", visible=False)
                self.fake_response_textbox = Textbox(label="Response", visible=False)
                (
                    self.retry_btn,
                    self.undo_btn,
                    self.clear_btn,
                    self.submit_btn,
                    self.stop_btn,
                ) = self.buttons

            if examples:
                if self.is_generator:
                    examples_fn = self._examples_stream_fn
                else:
                    examples_fn = self._examples_fn

                self.examples_handler = Examples(
                    examples=examples,
                    inputs=[self.textbox] + self.additional_inputs,
                    outputs=self.chatbot,
                    fn=examples_fn,
                )

            any_unrendered_inputs = any(
                not inp.is_rendered for inp in self.additional_inputs
            )
            if self.additional_inputs and any_unrendered_inputs:
                with Accordion(**self.additional_inputs_accordion_params):  # type: ignore
                    if self.render_additional_inputs_fn is not None:
                        self.render_additional_inputs_fn()
                    else:
                        for input_component in self.additional_inputs:
                            if not input_component.is_rendered:
                                input_component.render()
            
            # self.rag_content = gr.Textbox(
            #     scale=4,
            #     lines=16,
            #     label='Retrieved RAG context',
            #     placeholder="Rag context and instrution will show up here",
            #     interactive=False
            # )

            # The example caching must happen after the input components have rendered
            if cache_examples:
                client_utils.synchronize_async(self.examples_handler.cache)

            self.saved_input = State()
            self.chatbot_state = (
                State(self.chatbot.value) if self.chatbot.value else State([])
            )

            self._setup_events()
            self._setup_api()
    
    def _setup_events(self) -> None:
        from gradio.components import State
        has_on = False
        try:
            from gradio.events import Dependency, EventListenerMethod, on
            has_on = True
        except ImportError as ie:
            has_on = False
        submit_fn = self._stream_fn if self.is_generator else self._submit_fn
        if not self.is_generator:
            raise NotImplementedError(f'should use generator')

        if has_on:
            # new version
            submit_triggers = (
                [self.textbox.submit, self.submit_btn.click]
                if self.submit_btn
                else [self.textbox.submit]
            )
            submit_event = (
                on(
                    submit_triggers,
                    self._clear_and_save_textbox,
                    [self.textbox],
                    [self.textbox, self.saved_input],
                    api_name=False,
                    queue=False,
                )
                .then(
                    self._display_input,
                    [self.saved_input, self.chatbot_state],
                    [self.chatbot, self.chatbot_state],
                    api_name=False,
                    queue=False,
                )
                .then(
                    submit_fn,
                    [self.saved_input, self.chatbot_state] + self.additional_inputs,
                    [self.chatbot, self.chatbot_state, self.num_tokens, self.rag_content],
                    api_name=False,
                )
            )
            self._setup_stop_events(submit_triggers, submit_event)
        else:
            raise ValueError(f'Better install new gradio version than 3.44.0')

        if self.retry_btn:
            retry_event = (
                self.retry_btn.click(
                    self._delete_prev_fn,
                    [self.chatbot_state],
                    [self.chatbot, self.saved_input, self.chatbot_state],
                    api_name=False,
                    queue=False,
                )
                .then(
                    self._display_input,
                    [self.saved_input, self.chatbot_state],
                    [self.chatbot, self.chatbot_state],
                    api_name=False,
                    queue=False,
                )
                .then(
                    submit_fn,
                    [self.saved_input, self.chatbot_state] + self.additional_inputs,
                    [self.chatbot, self.chatbot_state, self.num_tokens, self.rag_content],
                    api_name=False,
                )
            )
            self._setup_stop_events([self.retry_btn.click], retry_event)

        if self.undo_btn:
            self.undo_btn.click(
                self._delete_prev_fn,
                [self.chatbot_state],
                [self.chatbot, self.saved_input, self.chatbot_state],
                api_name=False,
                queue=False,
            ).then(
                lambda x: x,
                [self.saved_input],
                [self.textbox],
                api_name=False,
                queue=False,
            )
        # Reconfigure clear_btn to stop and clear text box
    
    async def _stream_fn(
        self,
        message: str,
        history_with_input,
        request: Request,
        *args,
    ) -> AsyncGenerator:
        history = history_with_input[:-1]
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = SyncToAsyncIterator(generator, self.limiter)

        # ! In case of error, yield the previous history & undo any generation before raising error
        try:
            first_response_pack = await async_iteration(generator)
            if isinstance(first_response_pack, (tuple, list)):
                first_response, num_tokens, rag_content = first_response_pack
            else:
                first_response, num_tokens, rag_content = first_response_pack, -1, ""
            update = history + [[message, first_response]]
            yield update, update, f"{num_tokens} toks", rag_content
        except StopIteration:
            update = history + [[message, None]]
            yield update, update, "NaN toks", ""
        except Exception as e:
            yield history, history, "NaN toks", ""
            raise e

        try:
            async for response_pack in generator:
                if isinstance(response_pack, (tuple, list)):
                    response, num_tokens, rag_content = response_pack
                else:
                    response, num_tokens, rag_content = response_pack, "NaN toks", ""
                update = history + [[message, response]]
                yield update, update, f"{num_tokens} toks", rag_content
        except Exception as e:
            yield history, history, "NaN toks", ""
            raise e



@register_demo
class RagChatInterfaceDemo(ChatInterfaceDemo):

    @property
    def examples(self):
        return [
            ["Explain how attention works.", "assets/attention_all_you_need.pdf"],
            ["Explain why the sky is blue.", None],
        ]
    
    @property
    def tab_name(self):
        return "RAG Chat"

    def create_demo(
            self, 
            title: str | None = None, 
            description: str | None = None, 
            **kwargs
        ) -> gr.Blocks:
        load_embeddings()
        global RAG_EMBED
        # assert RAG_EMBED is not None
        print(F'{RAG_EMBED=}')
        system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
        max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
        temperature = kwargs.get("temperature", TEMPERATURE)
        model_name = kwargs.get("model_name", MODEL_NAME)
        rag_num_docs = kwargs.get("rag_num_docs", 3)

        from ..configs import RAG_EMBED_MODEL_NAME

        description = (
            description or 
            f"""Upload a long document to ask question with RAG. Check the RAG retrieved text segment on the left. 
Control `RAG instruction` below to fit your language. Embedding model {RAG_EMBED_MODEL_NAME}."""
        )

        additional_inputs = [
            gr.File(label='Upload Document', file_count='single', file_types=['pdf', 'docx', 'txt']),
            gr.Number(value=temperature, label='Temperature', min_width=20), 
            gr.Number(value=max_tokens, label='Max tokens', min_width=20), 
            gr.Textbox(value=system_prompt, label='System prompt', lines=2),
            gr.Number(value=rag_num_docs, label='RAG Top-K', min_width=20),
            gr.Textbox(value=DOC_INSTRUCTION, label='RAG instruction'),
        ]
        def render_additional_inputs_fn():
            additional_inputs[0].render()
            with Row():
                additional_inputs[1].render()
                additional_inputs[2].render()
                additional_inputs[4].render()
            additional_inputs[3].render()
            additional_inputs[5].render()

        demo_chat = RagChatInterface(
            chat_response_stream_multiturn_doc_engine,
            chatbot=gr.Chatbot(
                label=model_name,
                bubble_full_width=False,
                latex_delimiters=[
                    { "left": "$", "right": "$", "display": False},
                    { "left": "$$", "right": "$$", "display": True},
                ],
                show_copy_button=True,
                scale=3,
                layout="panel" if USE_PANEL else "bubble",
                height=CHATBOT_HEIGHT,
            ),
            textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200, scale=8),
            submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
            # ! consider preventing the stop button
            # stop_btn=None,
            title=title,
            description=description,
            additional_inputs=additional_inputs, 
            render_additional_inputs_fn=render_additional_inputs_fn,
            additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True),
            examples=self.examples,
            cache_examples=False,
        )
        return demo_chat