File size: 7,466 Bytes
8889bbb
 
 
 
 
988983d
8889bbb
 
 
 
 
 
 
 
 
988983d
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c19b3
988983d
 
d3c19b3
988983d
b5e448d
 
d3c19b3
988983d
 
d3c19b3
988983d
 
 
fb10dcf
 
988983d
 
fb10dcf
 
 
 
 
 
 
988983d
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c19b3
 
 
8889bbb
 
 
 
 
 
 
 
 
fb10dcf
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c19b3
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os

# ! UI Markdown information

MODEL_TITLE = """
<img src="file/seal_logo.png" style="
    max-width: 10em;
    max-height: 5%;
    height: 3em;
    width: 3em;
">
<div class="text" style="
loat: left;
padding-bottom: 2%;
">
SeaLLMs - Large Language Models for Southeast Asia
</div>
"""

# <a href='https://huggingface.co/spaces/SeaLLMs/SeaLMMM-7b'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> 
# <a href='https://huggingface.co/SeaLLMs/SeaLLM-7B-v2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> 
# 
MODEL_DESC = f"""
<div style='display:flex; gap: 0.25rem; '>
<a href='https://github.com/damo-nlp-sg/seallms'><img src='https://img.shields.io/badge/Github-Code-success'></a>
<a href='https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> 
<a href='https://huggingface.co/SeaLLMs/SeaLMMM-7B-early'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> 
</div>
<span style="font-size: larger">
<a href="https://huggingface.co/SeaLLMs/SeaLMMM-7B-early" target="_blank">SeaLMMM-7B-early</a> - multilingual multimodal assistant for Southeast Asia. It handles <b>both</b> text-only (<a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank">LLMs</a> and vision instructions (LVMs). <span style="color: red">SeaLMMM-7B has not finished training.</span>
</span>
<br>
<span>
<span style="color: red">The chatbot may produce false and harmful content!</span>
By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>
</span>
""".strip()

# Explore <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B" target="_blank">SeaLMMM-7B</a> - our multi-modal version of SeaLLMs.
MODEL_DESC = f"""
<div style='display:flex; gap: 0.25rem; '>
<a href='https://damo-nlp-sg.github.io/SeaLLMs/'><img src='https://img.shields.io/badge/Blog-red'></a>
<a href='https://github.com/damo-nlp-sg/seallms'><img src='https://img.shields.io/badge/Github-Code-success'></a>
<a href='https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B-v2.5'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> 
<a href='https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> 
<a href='https://arxiv.org/pdf/2312.00738.pdf'><img src='https://img.shields.io/badge/Paper-red'></a>
</div>
<span style="font-size: larger">
<a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5" target="_blank">SeaLLM-7B-v2.5</a> - a assistant for Southeast Asian Languages ๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿ‡ป๐Ÿ‡ณ ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿ‡น๐Ÿ‡ญ ๐Ÿ‡ฒ๐Ÿ‡พ ๐Ÿ‡ฐ๐Ÿ‡ญ ๐Ÿ‡ฑ๐Ÿ‡ฆ ๐Ÿ‡ต๐Ÿ‡ญ ๐Ÿ‡ฒ๐Ÿ‡ฒ.
</span>
<br>
<span>
<span style="color: red">The chatbot may produce false and harmful content!</span>
By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>
</span>
""".strip()
# <span>
# <span style="color: red">NOTE: The chatbot may produce false and harmful content and does not have up-to-date knowledge.</span> 
# By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>, which includes 
# not to use our service to generate any harmful, inappropriate or illegal content. 
# The service collects user dialogue data for testing and improvement under 
# <a href="https://creativecommons.org/licenses/by/4.0/">(CC-BY)</a> or similar license. So do not enter any personal information!
# </span>

"""
By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>, which includes 
not to use our service to generate any harmful, inappropriate or illegal content. 
The service collects user dialogue data for testing and improvement under 
<a href="https://creativecommons.org/licenses/by/4.0/">(CC-BY)</a> or similar license. So do not enter any personal information!
"""

# MODEL_INFO = """
# <h4 style="display: hidden;">Model Name: {model_path}</h4>
# """
MODEL_INFO = ""

CITE_MARKDOWN = """
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023seallm,
  author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Weiwen Xu, Hou Pong Chan, 
            Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, 
            Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing},
  title = {SeaLLMs - Large Language Models for Southeast Asia},
  year = 2023,
}
```

"""
USE_PANEL = bool(int(os.environ.get("USE_PANEL", "1")))
CHATBOT_HEIGHT = int(os.environ.get("CHATBOT_HEIGHT", "500"))

ALLOWED_PATHS = ["seal_logo.png"]


DEMOS = os.environ.get("DEMOS", "")

DEMOS = DEMOS.split(",") if DEMOS.strip() != "" else [
    "DocChatInterfaceDemo",
    "ChatInterfaceDemo",
    "TextCompletionDemo",
    # "RagChatInterfaceDemo",
    # "VisionChatInterfaceDemo",
    # "VisionDocChatInterfaceDemo",
]

# DEMOS=DocChatInterfaceDemo,ChatInterfaceDemo,RagChatInterfaceDemo,TextCompletionDemo



# ! server info

DELETE_FOLDER = os.environ.get("DELETE_FOLDER", "")
PORT = int(os.environ.get("PORT", "7860"))
PROXY = os.environ.get("PROXY", "").strip()

# ! backend info

BACKEND = os.environ.get("BACKEND", "debug")

# ! model information
# for RAG
RAG_EMBED_MODEL_NAME = os.environ.get("RAG_EMBED_MODEL_NAME", "sentence-transformers/all-MiniLM-L6-v2")
CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1024"))
CHUNK_OVERLAP = int(os.environ.get("CHUNK_SIZE", "50"))


SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", """You are a helpful, respectful, honest and safe AI assistant.""")

MAX_TOKENS = int(os.environ.get("MAX_TOKENS", "2048"))
TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.1"))
# ! these values currently not used
FREQUENCE_PENALTY = float(os.environ.get("FREQUENCE_PENALTY", "0.0"))
PRESENCE_PENALTY = float(os.environ.get("PRESENCE_PENALTY", "0.0"))


# Transformers or vllm
MODEL_PATH = os.environ.get("MODEL_PATH", "SeaLLMs/SeaLLM-7B-v2")
MODEL_NAME = os.environ.get("MODEL_NAME", "Cool-Chatbot")
DTYPE = os.environ.get("DTYPE", "bfloat16")
DEVICE = os.environ.get("DEVICE", "cuda")

# VLLM
GPU_MEMORY_UTILIZATION = float(os.environ.get("GPU_MEMORY_UTILIZATION", "0.9"))
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
QUANTIZATION = str(os.environ.get("QUANTIZATION", ""))
STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1"))
# how many iterations to perform safety check on response
STREAM_CHECK_MULTIPLE = int(os.environ.get("STREAM_CHECK_MULTIPLE", "0"))

# llama.cpp
DEFAULT_CHAT_TEMPLATE = os.environ.get("DEFAULT_CHAT_TEMPLATE", "chatml")
N_CTX = int(os.environ.get("N_CTX", "4096"))
N_GPU_LAYERS = int(os.environ.get("N_GPU_LAYERS", "-1"))

# llava.llama.cpp


# Multimodal
IMAGE_TOKEN = os.environ.get("IMAGE_TOKEN", "[IMAGE]<|image|>[/IMAGE]")
IMAGE_TOKEN_INTERACTIVE = bool(int(os.environ.get("IMAGE_TOKEN_INTERACTIVE", "0")))
IMAGE_TOKEN_LENGTH = int(os.environ.get("IMAGE_TOKEN_LENGTH", "576"))
MAX_PACHES = int(os.environ.get("MAX_PACHES", "1"))