File size: 1,755 Bytes
1dd96df
 
 
 
 
c278d8b
1dd96df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
import streamlit.components.v1 as components

from st_on_hover_tabs import on_hover_tabs

from .app.pages import *

import json

# if __name__ == "__main__":
st.set_page_config(
    page_title="Leaderboard", page_icon=":chart_with_upwards_trend:", layout="wide"
)

st.header("SeaEval Leaderboard")
st.markdown('<style>' + open('./style/sidebar_style.css').read() + '</style>', unsafe_allow_html=True)

with st.sidebar:
    tabs = on_hover_tabs(tabName=['Dashboard', 'Cross-Lingual Consistency', 'Cultural Reasoning', 
                                    'General Reasoning', 'FLORES-Translation', 'Emotion', 'Dialogue', 'Fundamental NLP Tasks'],
                            iconName=['dashboard', 'filter_1', 'filter_2', 'filter_3', 'filter_4', 
                                    'filter_5', 'filter_6', 'filter_7'], 
                            styles = {
                                'navtab': {
                                    'font-size': '12px',
                                    'transition': '.1s',
                                },
                                'iconStyle':{
                                    'font-size': '18px',
                                },
                            },
                            default_choice=0
                            )
    

if tabs =='Dashboard':
    dashboard()

elif tabs == 'Cross-Lingual Consistency':
    cross_lingual_consistency()

elif tabs == 'Cultural Reasoning':
    cultural_reasoning()

elif tabs == 'General Reasoning':
    general_reasoning()

elif tabs == 'FLORES-Translation':
    flores()

elif tabs == 'Emotion':
    emotion()

elif tabs == 'Dialogue':
    dialogue()

elif tabs == 'Fundamental NLP Tasks':
    fundamental_nlp_tasks()