File size: 19,828 Bytes
ffbe0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import math
import warnings
import random
import numbers
import numpy as np
from PIL import Image, ImageFilter
from collections.abc import Sequence

import torch
import torchvision.transforms.functional as TF

_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
}


def _get_image_size(img):
    if TF._is_pil_image(img):
        return img.size
    elif isinstance(img, torch.Tensor) and img.dim() > 2:
        return img.shape[-2:][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


class RandomHorizontalFlip(object):
    """Horizontal flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, mask):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
        if random.random() < self.p:
            img = TF.hflip(img)
            mask = TF.hflip(mask)
        return img, mask

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomVerticalFlip(object):
    """Vertical flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, mask):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
        if random.random() < self.p:
            img = TF.vflip(img)
            mask = TF.vflip(mask)
        return img, mask

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class GaussianBlur(object):
    """Gaussian blur augmentation from SimCLR: https://arxiv.org/abs/2002.05709"""
    def __init__(self, sigma=[.1, 2.]):
        self.sigma = sigma

    def __call__(self, x):
        sigma = random.uniform(self.sigma[0], self.sigma[1])
        x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
        return x


class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
            will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
            outside the transform in the output image.(Pillow>=5.0.0)

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
    def __init__(self,
                 degrees,
                 translate=None,
                 scale=None,
                 shear=None,
                 resample=False,
                 fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
                        "translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError(
                        "If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
                assert isinstance(shear, (tuple, list)) and \
                       (len(shear) == 2 or len(shear) == 4), \
                       "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [
                    random.uniform(shears[0], shears[1]),
                    random.uniform(shears[2], shears[3])
                ]
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img, mask):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale,
                              self.shear, img.size)
        img = TF.affine(img,
                        *ret,
                        resample=self.resample,
                        fillcolor=self.fillcolor)
        mask = TF.affine(mask, *ret, resample=Image.NEAREST, fillcolor=0)
        return img, mask

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
            of the image. Default is None, i.e no padding. If a sequence of length
            4 is provided, it is used to pad left, top, right, bottom borders
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
        pad_if_needed (boolean): It will pad the image if smaller than the
            desired size to avoid raising an exception. Since cropping is done
            after padding, the padding seems to be done at a random offset.
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

    """
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant'):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        w, h = _get_image_size(img)
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img, mask):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        # if self.padding is not None:
        #     img = TF.pad(img, self.padding, self.fill, self.padding_mode)
        #
        # # pad the width if needed
        # if self.pad_if_needed and img.size[0] < self.size[1]:
        #     img = TF.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
        # # pad the height if needed
        # if self.pad_if_needed and img.size[1] < self.size[0]:
        #     img = TF.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)

        i, j, h, w = self.get_params(img, self.size)
        img = TF.crop(img, i, j, h, w)
        mask = TF.crop(mask, i, j, h, w)

        return img, mask

    def __repr__(self):
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(
            self.size, self.padding)


class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
        interpolation: Default: PIL.Image.BILINEAR
    """
    def __init__(self,
                 size,
                 scale=(0.08, 1.0),
                 ratio=(3. / 4., 4. / 3.),
                 interpolation=Image.BILINEAR):
        if isinstance(size, (tuple, list)):
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

        self.interpolation = interpolation
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        width, height = _get_image_size(img)
        area = height * width

        for _ in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if (in_ratio < min(ratio)):
            w = width
            h = int(round(w / min(ratio)))
        elif (in_ratio > max(ratio)):
            h = height
            w = int(round(h * max(ratio)))
        else:  # whole image
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w

    def __call__(self, img, mask):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        # print(i, j, h, w)
        img = TF.resized_crop(img, i, j, h, w, self.size, self.interpolation)
        mask = TF.resized_crop(mask, i, j, h, w, self.size, Image.NEAREST)
        return img, mask

    def __repr__(self):
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += ', scale={0}'.format(
            tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(
            tuple(round(r, 4) for r in self.ratio))
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string


class ToOnehot(object):
    """To oneshot tensor

    Args:
        max_obj_n (float): Maximum number of the objects
    """
    def __init__(self, max_obj_n, shuffle):
        self.max_obj_n = max_obj_n
        self.shuffle = shuffle

    def __call__(self, mask, obj_list=None):
        """
        Args:
            mask (Mask in Numpy): Mask to be converted.

        Returns:
            Tensor: Converted mask in onehot format.
        """

        new_mask = np.zeros((self.max_obj_n + 1, *mask.shape), np.uint8)

        if not obj_list:
            obj_list = list()
            obj_max = mask.max() + 1
            for i in range(1, obj_max):
                tmp = (mask == i).astype(np.uint8)
                if tmp.max() > 0:
                    obj_list.append(i)

            if self.shuffle:
                random.shuffle(obj_list)
            obj_list = obj_list[:self.max_obj_n]

        for i in range(len(obj_list)):
            new_mask[i + 1] = (mask == obj_list[i]).astype(np.uint8)
        new_mask[0] = 1 - np.sum(new_mask, axis=0)

        return torch.from_numpy(new_mask), obj_list

    def __repr__(self):
        return self.__class__.__name__ + '(max_obj_n={})'.format(
            self.max_obj_n)


class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
    """
    def __init__(self, size, interpolation=Image.BILINEAR):
        super().__init__()
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(
                type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError(
                "If size is a sequence, it should have 1 or 2 values")
        self.size = size
        self.interpolation = interpolation

    def forward(self, img, mask):
        """
        Args:
            img (PIL Image or Tensor): Image to be scaled.

        Returns:
            PIL Image or Tensor: Rescaled image.
        """
        img = TF.resize(img, self.size, self.interpolation)
        mask = TF.resize(mask, self.size, Image.NEAREST)
        return img, mask

    def __repr__(self):
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(
            self.size, interpolate_str)