Spaces:
Sleeping
Sleeping
File size: 1,206 Bytes
9a6d84b 51563bd 9a6d84b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
from ultralytics import YOLO
import cv2
import torch
# Check for GPU availability
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Load the YOLOv8 model from the 'model' directory
model = YOLO('best.pt')
model.to(device)
def detect_objects(image):
"""
Performs object detection on the input image and returns the image with
bounding boxes and labels drawn on it.
"""
# Run inference on the image
results = model(image)
# The plot() method returns a BGR numpy array with detections
annotated_image = results[0].plot()
# Convert the annotated image from BGR (OpenCV format) to RGB (Gradio format)
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
return annotated_image_rgb
# Create a Gradio interface
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="YOLOv8 Object Detection",
description="Upload an image and the YOLOv8 model will detect objects. Runs on CPU or GPU if available.",
)
if __name__ == "__main__":
iface.launch()
|