Spaces:
Sleeping
Sleeping
File size: 1,503 Bytes
4325517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
from smolagents import tool
import os
import requests
import pandas as pd
from io import BytesIO
DEFAULT_API_URL = os.getenv("AGENT_API_URL", "https://agents-course-unit4-scoring.hf.space")
@tool
def read_excel_as_json(task_id: str) -> dict:
"""
Fetches and parses an Excel file as structured JSON for a given task_id.
Args:
task_id: The task ID to fetch.
Returns:
{
"task_id": str,
"sheets": {
"SheetName1": [ {col1: val1, col2: val2, ...}, ... ],
...
},
"status": "Success" | "Error"
}
"""
url = f"{DEFAULT_API_URL}/files/{task_id}"
try:
response = requests.get(url, timeout=10)
if response.status_code != 200:
return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"}
xls = pd.ExcelFile(BytesIO(response.content))
sheets_json = {}
for sheet in xls.sheet_names:
df = xls.parse(sheet)
df = df.dropna(how="all") # Remove completely empty rows
rows = df.head(20).to_dict(orient="records") # limit to first 20 rows
sheets_json[sheet] = rows
return {
"task_id": task_id,
"sheets": sheets_json,
"status": "Success"
}
except Exception as e:
return {
"task_id": task_id,
"sheets": {},
"status": f"Error: {str(e)}"
}
|