Spaces:
Runtime error
Runtime error
File size: 20,489 Bytes
ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de ba14e67 77f26de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import gradio as gr
import base64
import requests
import json
import re
import os
import uuid
from datetime import datetime
# --- Configuration ---
# IMPORTANT: Set your OPENROUTER_API_KEY as a Hugging Face Space Secret
OPENROUTER_API_KEY = "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"
IMAGE_MODEL = "opengvlab/internvl3-14b:free" # Using the free tier model as specified
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
# --- Global State (managed within Gradio's session if possible, or module-level for simplicity here) ---
# This will be reset each time the processing function is called.
processed_files_data = [] # Stores dicts for each file's details and status
person_profiles = {} # Stores dicts for each identified person and their documents
# --- Helper Functions ---
def extract_json_from_text(text):
if not text:
return {"error": "Empty text provided for JSON extraction."}
match_block = re.search(r"```json\s*(\{.*?\})\s*```", text, re.DOTALL | re.IGNORECASE)
if match_block:
json_str = match_block.group(1)
else:
text_stripped = text.strip()
if text_stripped.startswith("`") and text_stripped.endswith("`"):
json_str = text_stripped[1:-1]
else:
json_str = text_stripped
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
try:
first_brace = json_str.find('{')
last_brace = json_str.rfind('}')
if first_brace != -1 and last_brace != -1 and last_brace > first_brace:
potential_json_str = json_str[first_brace : last_brace+1]
return json.loads(potential_json_str)
else:
return {"error": f"Invalid JSON structure: {str(e)}", "original_text": text}
except json.JSONDecodeError as e2:
return {"error": f"Invalid JSON structure after attempting substring: {str(e2)}", "original_text": text}
def get_ocr_prompt():
return f"""You are an advanced OCR and information extraction AI.
Your task is to meticulously analyze this image and extract all relevant information.
Output Format Instructions:
Provide your response as a SINGLE, VALID JSON OBJECT. Do not include any explanatory text before or after the JSON.
The JSON object should have the following top-level keys:
- "document_type_detected": (string) Your best guess of the specific document type (e.g., "Passport", "National ID Card", "Driver's License", "Visa Sticker", "Hotel Confirmation Voucher", "Bank Statement", "Photo of a person").
- "extracted_fields": (object) A key-value map of all extracted information. Be comprehensive. Examples:
- For passports/IDs: "Surname", "Given Names", "Full Name", "Document Number", "Nationality", "Date of Birth", "Sex", "Place of Birth", "Date of Issue", "Date of Expiry", "Issuing Authority", "Country Code".
- For hotel reservations: "Guest Name", "Hotel Name", "Booking Reference", "Check-in Date", "Check-out Date".
- For bank statements: "Account Holder Name", "Account Number", "Bank Name", "Statement Period", "Ending Balance".
- For photos: "Description" (e.g., "Portrait of a person", "Group photo at a location"), "People Present" (array of strings if multiple).
- "mrz_data": (object or null) If a Machine Readable Zone (MRZ) is present:
- "raw_mrz_lines": (array of strings) Each line of the MRZ.
- "parsed_mrz": (object) Key-value pairs of parsed MRZ fields.
If no MRZ, this field should be null.
- "full_text_ocr": (string) Concatenation of all text found on the document.
Extraction Guidelines:
1. Prioritize accuracy.
2. Extract all visible text. Include "Full Name" by combining given and surnames if possible.
3. For dates, try to use ISO 8601 format (YYYY-MM-DD) if possible, but retain original format if conversion is ambiguous.
Ensure the entire output strictly adheres to the JSON format.
"""
def call_openrouter_ocr(image_filepath):
if not OPENROUTER_API_KEY:
return {"error": "OpenRouter API Key not configured."}
try:
with open(image_filepath, "rb") as f:
encoded_image = base64.b64encode(f.read()).decode("utf-8")
mime_type = "image/jpeg"
if image_filepath.lower().endswith(".png"):
mime_type = "image/png"
elif image_filepath.lower().endswith(".webp"):
mime_type = "image/webp"
data_url = f"data:{mime_type};base64,{encoded_image}"
prompt_text = get_ocr_prompt()
payload = {
"model": IMAGE_MODEL,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt_text},
{"type": "image_url", "image_url": {"url": data_url}}
]
}
],
"max_tokens": 3500,
"temperature": 0.1,
}
headers = {
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json",
"HTTP-Referer": "https://huggingface.co/spaces/YOUR_SPACE",
"X-Title": "Gradio Document Processor"
}
response = requests.post(OPENROUTER_API_URL, headers=headers, json=payload, timeout=180)
response.raise_for_status()
result = response.json()
if "choices" in result and result["choices"]:
raw_content = result["choices"][0]["message"]["content"]
return extract_json_from_text(raw_content)
else:
return {"error": "No 'choices' in API response from OpenRouter.", "details": result}
except requests.exceptions.Timeout:
return {"error": "API request timed out."}
except requests.exceptions.RequestException as e:
error_message = f"API Request Error: {str(e)}"
if hasattr(e, 'response') and e.response is not None:
error_message += f" Status: {e.response.status_code}, Response: {e.response.text}"
return {"error": error_message}
except Exception as e:
return {"error": f"An unexpected error occurred during OCR: {str(e)}"}
def extract_entities_from_ocr(ocr_json):
if not ocr_json or "extracted_fields" not in ocr_json or not isinstance(ocr_json.get("extracted_fields"), dict):
doc_type_from_ocr = "Unknown"
if isinstance(ocr_json, dict): # ocr_json itself might be an error dict
doc_type_from_ocr = ocr_json.get("document_type_detected", "Unknown (error in OCR)")
return {"name": None, "dob": None, "passport_no": None, "doc_type": doc_type_from_ocr}
fields = ocr_json["extracted_fields"]
doc_type = ocr_json.get("document_type_detected", "Unknown")
name_keys = ["full name", "name", "account holder name", "guest name"]
dob_keys = ["date of birth", "dob"]
passport_keys = ["document number", "passport number"]
extracted_name = None
for key in name_keys:
for field_key, value in fields.items():
if key == field_key.lower():
extracted_name = str(value) if value else None
break
if extracted_name: break
extracted_dob = None
for key in dob_keys:
for field_key, value in fields.items():
if key == field_key.lower():
extracted_dob = str(value) if value else None
break
if extracted_dob: break
extracted_passport_no = None
for key in passport_keys:
for field_key, value in fields.items():
if key == field_key.lower():
extracted_passport_no = str(value).replace(" ", "").upper() if value else None
break
if extracted_passport_no: break
return {
"name": extracted_name,
"dob": extracted_dob,
"passport_no": extracted_passport_no,
"doc_type": doc_type
}
def normalize_name(name):
if not name: return ""
return "".join(filter(str.isalnum, name)).lower()
def get_person_id_and_update_profiles(doc_id, entities, current_persons_data):
passport_no = entities.get("passport_no")
name = entities.get("name")
dob = entities.get("dob")
if passport_no:
for p_key, p_data in current_persons_data.items():
if passport_no in p_data.get("passport_numbers", set()):
p_data["doc_ids"].add(doc_id)
if name and not p_data.get("canonical_name"): p_data["canonical_name"] = name
if dob and not p_data.get("canonical_dob"): p_data["canonical_dob"] = dob
return p_key
new_person_key = f"person_{passport_no}"
current_persons_data[new_person_key] = {
"canonical_name": name, "canonical_dob": dob,
"names": {normalize_name(name)} if name else set(),
"dobs": {dob} if dob else set(),
"passport_numbers": {passport_no}, "doc_ids": {doc_id},
"display_name": name or f"Person (ID: {passport_no})"
}
return new_person_key
if name and dob:
norm_name = normalize_name(name)
composite_key_nd = f"{norm_name}_{dob}"
for p_key, p_data in current_persons_data.items():
if norm_name in p_data.get("names", set()) and dob in p_data.get("dobs", set()):
p_data["doc_ids"].add(doc_id)
return p_key
new_person_key = f"person_{composite_key_nd}_{str(uuid.uuid4())[:4]}"
current_persons_data[new_person_key] = {
"canonical_name": name, "canonical_dob": dob,
"names": {norm_name}, "dobs": {dob},
"passport_numbers": set(), "doc_ids": {doc_id},
"display_name": name
}
return new_person_key
if name:
norm_name = normalize_name(name)
new_person_key = f"person_{norm_name}_{str(uuid.uuid4())[:4]}"
current_persons_data[new_person_key] = {
"canonical_name": name, "canonical_dob": None,
"names": {norm_name}, "dobs": set(), "passport_numbers": set(),
"doc_ids": {doc_id}, "display_name": name
}
return new_person_key
generic_person_key = f"unidentified_person_{str(uuid.uuid4())[:6]}"
current_persons_data[generic_person_key] = {
"canonical_name": "Unknown", "canonical_dob": None,
"names": set(), "dobs": set(), "passport_numbers": set(),
"doc_ids": {doc_id}, "display_name": f"Unknown Person ({doc_id[:6]})"
}
return generic_person_key
def format_dataframe_data(current_files_data):
df_rows = []
for f_data in current_files_data:
entities = f_data.get("entities") or {} # CORRECTED LINE HERE
df_rows.append([
f_data.get("doc_id", "N/A")[:8],
f_data.get("filename", "N/A"),
f_data.get("status", "N/A"),
entities.get("doc_type", "N/A"),
entities.get("name", "N/A"),
entities.get("dob", "N/A"),
entities.get("passport_no", "N/A"),
f_data.get("assigned_person_key", "N/A")
])
return df_rows
def format_persons_markdown(current_persons_data, current_files_data):
if not current_persons_data:
return "No persons identified yet."
md_parts = ["## Classified Persons & Documents\n"]
for p_key, p_data in current_persons_data.items():
display_name = p_data.get('display_name', p_key)
md_parts.append(f"### Person: {display_name} (Profile Key: {p_key})")
if p_data.get("canonical_dob"): md_parts.append(f"* DOB: {p_data['canonical_dob']}")
if p_data.get("passport_numbers"): md_parts.append(f"* Passport(s): {', '.join(p_data['passport_numbers'])}")
md_parts.append("* Documents:")
doc_ids_for_person = p_data.get("doc_ids", set())
if doc_ids_for_person:
for doc_id in doc_ids_for_person:
doc_detail = next((f for f in current_files_data if f["doc_id"] == doc_id), None)
if doc_detail:
filename = doc_detail.get("filename", "Unknown File")
doc_entities = doc_detail.get("entities") or {}
doc_type = doc_entities.get("doc_type", "Unknown Type")
md_parts.append(f" - {filename} (`{doc_type}`)")
else:
md_parts.append(f" - Document ID: {doc_id[:8]} (details error)")
else:
md_parts.append(" - No documents currently assigned.")
md_parts.append("\n---\n")
return "\n".join(md_parts)
def process_uploaded_files(files_list, progress=gr.Progress(track_tqdm=True)):
global processed_files_data, person_profiles
processed_files_data = []
person_profiles = {}
if not OPENROUTER_API_KEY:
yield (
[["N/A", "ERROR", "OpenRouter API Key not configured.", "N/A", "N/A", "N/A", "N/A", "N/A"]],
"Error: OpenRouter API Key not configured. Please set it in Space Secrets.",
"{}", "API Key Missing. Processing halted."
)
return
if not files_list:
yield ([], "No files uploaded.", "{}", "Upload files to begin.")
return
for i, file_obj in enumerate(files_list):
doc_uid = str(uuid.uuid4())
processed_files_data.append({
"doc_id": doc_uid,
"filename": os.path.basename(file_obj.name if hasattr(file_obj, 'name') else f"file_{i+1}.unknown"),
"filepath": file_obj.name if hasattr(file_obj, 'name') else None, # file_obj itself is filepath if from gr.Files type="filepath"
"status": "Queued",
"ocr_json": None,
"entities": None,
"assigned_person_key": None
})
initial_df_data = format_dataframe_data(processed_files_data)
initial_persons_md = format_persons_markdown(person_profiles, processed_files_data)
yield (initial_df_data, initial_persons_md, "{}", f"Initialized. Found {len(files_list)} files.")
for i, file_data_item in enumerate(progress.tqdm(processed_files_data, desc="Processing Documents")):
current_doc_id = file_data_item["doc_id"]
current_filename = file_data_item["filename"]
if not file_data_item["filepath"]: # Check if filepath is valid
file_data_item["status"] = "Error: Invalid file path"
df_data = format_dataframe_data(processed_files_data)
persons_md = format_persons_markdown(person_profiles, processed_files_data)
yield(df_data, persons_md, "{}", f"({i+1}/{len(processed_files_data)}) Error with file {current_filename}")
continue
file_data_item["status"] = "OCR in Progress..."
df_data = format_dataframe_data(processed_files_data)
persons_md = format_persons_markdown(person_profiles, processed_files_data)
yield (df_data, persons_md, "{}", f"({i+1}/{len(processed_files_data)}) OCR for: {current_filename}")
ocr_result = call_openrouter_ocr(file_data_item["filepath"])
file_data_item["ocr_json"] = ocr_result
if "error" in ocr_result:
file_data_item["status"] = f"OCR Error: {str(ocr_result['error'])[:50]}..."
df_data = format_dataframe_data(processed_files_data)
yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) OCR Error on {current_filename}")
continue
file_data_item["status"] = "OCR Done. Extracting Entities..."
df_data = format_dataframe_data(processed_files_data)
yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) OCR Done for {current_filename}")
entities = extract_entities_from_ocr(ocr_result)
file_data_item["entities"] = entities
file_data_item["status"] = "Entities Extracted. Classifying..."
df_data = format_dataframe_data(processed_files_data)
yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) Entities for {current_filename}")
person_key = get_person_id_and_update_profiles(current_doc_id, entities, person_profiles)
file_data_item["assigned_person_key"] = person_key
file_data_item["status"] = "Classified"
df_data = format_dataframe_data(processed_files_data)
persons_md = format_persons_markdown(person_profiles, processed_files_data)
yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) Classified {current_filename} -> {person_key}")
final_df_data = format_dataframe_data(processed_files_data)
final_persons_md = format_persons_markdown(person_profiles, processed_files_data)
yield (final_df_data, final_persons_md, "{}", f"All {len(processed_files_data)} documents processed.")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 📄 Intelligent Document Processor & Classifier")
gr.Markdown(
"**Upload multiple documents (images of passports, bank statements, hotel reservations, photos, etc.). "
"The system will perform OCR, attempt to extract key entities, and classify documents by the person they belong to.**\n"
"Ensure `OPENROUTER_API_KEY` is set as a Secret in your Hugging Face Space."
)
if not OPENROUTER_API_KEY:
gr.Markdown("<h3 style='color:red;'>⚠️ ERROR: `OPENROUTER_API_KEY` is not set in Space Secrets! OCR will fail.</h3>")
with gr.Row():
with gr.Column(scale=1):
files_input = gr.Files(label="Upload Document Images (Bulk)", file_count="multiple", type="filepath") # Using filepath
process_button = gr.Button("🚀 Process Uploaded Documents", variant="primary")
overall_status_textbox = gr.Textbox(label="Overall Progress", interactive=False, lines=1)
gr.Markdown("---")
gr.Markdown("## Document Processing Details")
dataframe_headers = ["Doc ID (short)", "Filename", "Status", "Detected Type", "Name", "DOB", "Passport No.", "Assigned Person Key"]
document_status_df = gr.Dataframe(
headers=dataframe_headers,
datatype=["str"] * len(dataframe_headers),
label="Individual Document Status & Extracted Entities",
row_count=(1, "dynamic"), # Start with 1 row, dynamically grows
col_count=(len(dataframe_headers), "fixed"),
wrap=True
)
ocr_json_output = gr.Code(label="Selected Document OCR JSON", language="json", interactive=False)
gr.Markdown("---")
person_classification_output_md = gr.Markdown("## Classified Persons & Documents\nNo persons identified yet.")
process_button.click(
fn=process_uploaded_files,
inputs=[files_input],
outputs=[
document_status_df,
person_classification_output_md,
ocr_json_output,
overall_status_textbox
]
)
@document_status_df.select(inputs=None, outputs=ocr_json_output, show_progress="hidden")
def display_selected_ocr(evt: gr.SelectData):
if evt.index is None or evt.index[0] is None:
return "{}"
selected_row_index = evt.index[0]
# Ensure processed_files_data is accessible here. If it's truly global, it should be.
# For safety, one might pass it or make it part of a class if this were more complex.
if 0 <= selected_row_index < len(processed_files_data):
selected_doc_data = processed_files_data[selected_row_index]
if selected_doc_data and selected_doc_data.get("ocr_json"):
# Check if ocr_json is already a dict, if not, try to parse (though it should be)
ocr_data_to_display = selected_doc_data["ocr_json"]
if isinstance(ocr_data_to_display, str): # Should not happen if stored correctly
try:
ocr_data_to_display = json.loads(ocr_data_to_display)
except json.JSONDecodeError:
return json.dumps({"error": "Stored OCR data is not valid JSON string."}, indent=2)
return json.dumps(ocr_data_to_display, indent=2, ensure_ascii=False)
return json.dumps({ "message": "No OCR data found for selected row or selection out of bounds (check if processing is complete). Current rows: " + str(len(processed_files_data))}, indent=2)
if __name__ == "__main__":
demo.queue().launch(debug=True, share=os.environ.get("GRADIO_SHARE", "true").lower() == "true") |