File size: 20,489 Bytes
ba14e67
 
77f26de
ba14e67
77f26de
 
 
 
ba14e67
 
77f26de
 
 
ba14e67
 
77f26de
 
 
 
ba14e67
 
 
77f26de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba14e67
 
 
 
 
77f26de
ba14e67
77f26de
 
 
 
ba14e67
 
77f26de
ba14e67
 
 
 
77f26de
 
ba14e67
 
 
 
 
77f26de
ba14e67
77f26de
ba14e67
77f26de
 
 
 
 
 
 
 
 
ba14e67
 
 
 
 
 
 
 
 
 
 
77f26de
ba14e67
 
 
 
 
77f26de
 
ba14e67
77f26de
ba14e67
 
 
77f26de
 
ba14e67
77f26de
ba14e67
77f26de
ba14e67
 
77f26de
ba14e67
77f26de
ba14e67
77f26de
ba14e67
77f26de
 
 
 
 
 
ba14e67
77f26de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba14e67
 
77f26de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba14e67
 
77f26de
ba14e67
77f26de
 
 
ba14e67
 
77f26de
ba14e67
 
77f26de
 
 
 
 
 
 
 
 
 
 
 
 
ba14e67
77f26de
 
 
ba14e67
77f26de
 
 
 
 
 
 
 
ba14e67
77f26de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba14e67
 
77f26de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import gradio as gr
import base64
import requests
import json
import re
import os
import uuid
from datetime import datetime

# --- Configuration ---
# IMPORTANT: Set your OPENROUTER_API_KEY as a Hugging Face Space Secret
OPENROUTER_API_KEY = "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"
IMAGE_MODEL = "opengvlab/internvl3-14b:free" # Using the free tier model as specified
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"

# --- Global State (managed within Gradio's session if possible, or module-level for simplicity here) ---
# This will be reset each time the processing function is called.
processed_files_data = [] # Stores dicts for each file's details and status
person_profiles = {}      # Stores dicts for each identified person and their documents

# --- Helper Functions ---

def extract_json_from_text(text):
    if not text:
        return {"error": "Empty text provided for JSON extraction."}
    match_block = re.search(r"```json\s*(\{.*?\})\s*```", text, re.DOTALL | re.IGNORECASE)
    if match_block:
        json_str = match_block.group(1)
    else:
        text_stripped = text.strip()
        if text_stripped.startswith("`") and text_stripped.endswith("`"):
            json_str = text_stripped[1:-1]
        else:
            json_str = text_stripped
    try:
        return json.loads(json_str)
    except json.JSONDecodeError as e:
        try:
            first_brace = json_str.find('{')
            last_brace = json_str.rfind('}')
            if first_brace != -1 and last_brace != -1 and last_brace > first_brace:
                potential_json_str = json_str[first_brace : last_brace+1]
                return json.loads(potential_json_str)
            else:
                return {"error": f"Invalid JSON structure: {str(e)}", "original_text": text}
        except json.JSONDecodeError as e2:
             return {"error": f"Invalid JSON structure after attempting substring: {str(e2)}", "original_text": text}

def get_ocr_prompt():
    return f"""You are an advanced OCR and information extraction AI.
Your task is to meticulously analyze this image and extract all relevant information.

Output Format Instructions:
Provide your response as a SINGLE, VALID JSON OBJECT. Do not include any explanatory text before or after the JSON.
The JSON object should have the following top-level keys:
- "document_type_detected": (string) Your best guess of the specific document type (e.g., "Passport", "National ID Card", "Driver's License", "Visa Sticker", "Hotel Confirmation Voucher", "Bank Statement", "Photo of a person").
- "extracted_fields": (object) A key-value map of all extracted information. Be comprehensive. Examples:
    - For passports/IDs: "Surname", "Given Names", "Full Name", "Document Number", "Nationality", "Date of Birth", "Sex", "Place of Birth", "Date of Issue", "Date of Expiry", "Issuing Authority", "Country Code".
    - For hotel reservations: "Guest Name", "Hotel Name", "Booking Reference", "Check-in Date", "Check-out Date".
    - For bank statements: "Account Holder Name", "Account Number", "Bank Name", "Statement Period", "Ending Balance".
    - For photos: "Description" (e.g., "Portrait of a person", "Group photo at a location"), "People Present" (array of strings if multiple).
- "mrz_data": (object or null) If a Machine Readable Zone (MRZ) is present:
    - "raw_mrz_lines": (array of strings) Each line of the MRZ.
    - "parsed_mrz": (object) Key-value pairs of parsed MRZ fields.
    If no MRZ, this field should be null.
- "full_text_ocr": (string) Concatenation of all text found on the document.

Extraction Guidelines:
1.  Prioritize accuracy.
2.  Extract all visible text. Include "Full Name" by combining given and surnames if possible.
3.  For dates, try to use ISO 8601 format (YYYY-MM-DD) if possible, but retain original format if conversion is ambiguous.

Ensure the entire output strictly adheres to the JSON format.
"""

def call_openrouter_ocr(image_filepath):
    if not OPENROUTER_API_KEY:
        return {"error": "OpenRouter API Key not configured."}
    try:
        with open(image_filepath, "rb") as f:
            encoded_image = base64.b64encode(f.read()).decode("utf-8")
        mime_type = "image/jpeg"
        if image_filepath.lower().endswith(".png"):
            mime_type = "image/png"
        elif image_filepath.lower().endswith(".webp"):
            mime_type = "image/webp"
        data_url = f"data:{mime_type};base64,{encoded_image}"
        prompt_text = get_ocr_prompt()
        payload = {
            "model": IMAGE_MODEL,
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt_text},
                        {"type": "image_url", "image_url": {"url": data_url}}
                    ]
                }
            ],
            "max_tokens": 3500,
            "temperature": 0.1,
        }
        headers = {
            "Authorization": f"Bearer {OPENROUTER_API_KEY}",
            "Content-Type": "application/json",
            "HTTP-Referer": "https://huggingface.co/spaces/YOUR_SPACE", 
            "X-Title": "Gradio Document Processor"
        }
        response = requests.post(OPENROUTER_API_URL, headers=headers, json=payload, timeout=180)
        response.raise_for_status()
        result = response.json()
        if "choices" in result and result["choices"]:
            raw_content = result["choices"][0]["message"]["content"]
            return extract_json_from_text(raw_content)
        else:
            return {"error": "No 'choices' in API response from OpenRouter.", "details": result}
    except requests.exceptions.Timeout:
        return {"error": "API request timed out."}
    except requests.exceptions.RequestException as e:
        error_message = f"API Request Error: {str(e)}"
        if hasattr(e, 'response') and e.response is not None:
            error_message += f" Status: {e.response.status_code}, Response: {e.response.text}"
        return {"error": error_message}
    except Exception as e:
        return {"error": f"An unexpected error occurred during OCR: {str(e)}"}

def extract_entities_from_ocr(ocr_json):
    if not ocr_json or "extracted_fields" not in ocr_json or not isinstance(ocr_json.get("extracted_fields"), dict):
        doc_type_from_ocr = "Unknown"
        if isinstance(ocr_json, dict): # ocr_json itself might be an error dict
            doc_type_from_ocr = ocr_json.get("document_type_detected", "Unknown (error in OCR)")
        return {"name": None, "dob": None, "passport_no": None, "doc_type": doc_type_from_ocr}

    fields = ocr_json["extracted_fields"]
    doc_type = ocr_json.get("document_type_detected", "Unknown")
    name_keys = ["full name", "name", "account holder name", "guest name"]
    dob_keys = ["date of birth", "dob"]
    passport_keys = ["document number", "passport number"]
    extracted_name = None
    for key in name_keys:
        for field_key, value in fields.items():
            if key == field_key.lower():
                extracted_name = str(value) if value else None
                break
        if extracted_name: break
    extracted_dob = None
    for key in dob_keys:
        for field_key, value in fields.items():
            if key == field_key.lower():
                extracted_dob = str(value) if value else None
                break
        if extracted_dob: break
    extracted_passport_no = None
    for key in passport_keys:
        for field_key, value in fields.items():
            if key == field_key.lower():
                extracted_passport_no = str(value).replace(" ", "").upper() if value else None
                break
        if extracted_passport_no: break
    return {
        "name": extracted_name,
        "dob": extracted_dob,
        "passport_no": extracted_passport_no,
        "doc_type": doc_type
    }

def normalize_name(name):
    if not name: return ""
    return "".join(filter(str.isalnum, name)).lower()

def get_person_id_and_update_profiles(doc_id, entities, current_persons_data):
    passport_no = entities.get("passport_no")
    name = entities.get("name")
    dob = entities.get("dob")
    if passport_no:
        for p_key, p_data in current_persons_data.items():
            if passport_no in p_data.get("passport_numbers", set()):
                p_data["doc_ids"].add(doc_id)
                if name and not p_data.get("canonical_name"): p_data["canonical_name"] = name
                if dob and not p_data.get("canonical_dob"): p_data["canonical_dob"] = dob
                return p_key
        new_person_key = f"person_{passport_no}"
        current_persons_data[new_person_key] = {
            "canonical_name": name, "canonical_dob": dob,
            "names": {normalize_name(name)} if name else set(),
            "dobs": {dob} if dob else set(),
            "passport_numbers": {passport_no}, "doc_ids": {doc_id},
            "display_name": name or f"Person (ID: {passport_no})"
        }
        return new_person_key
    if name and dob:
        norm_name = normalize_name(name)
        composite_key_nd = f"{norm_name}_{dob}"
        for p_key, p_data in current_persons_data.items():
            if norm_name in p_data.get("names", set()) and dob in p_data.get("dobs", set()):
                p_data["doc_ids"].add(doc_id)
                return p_key
        new_person_key = f"person_{composite_key_nd}_{str(uuid.uuid4())[:4]}"
        current_persons_data[new_person_key] = {
            "canonical_name": name, "canonical_dob": dob,
            "names": {norm_name}, "dobs": {dob},
            "passport_numbers": set(), "doc_ids": {doc_id},
            "display_name": name
        }
        return new_person_key
    if name:
        norm_name = normalize_name(name)
        new_person_key = f"person_{norm_name}_{str(uuid.uuid4())[:4]}"
        current_persons_data[new_person_key] = {
            "canonical_name": name, "canonical_dob": None,
            "names": {norm_name}, "dobs": set(), "passport_numbers": set(),
            "doc_ids": {doc_id}, "display_name": name
        }
        return new_person_key
    generic_person_key = f"unidentified_person_{str(uuid.uuid4())[:6]}"
    current_persons_data[generic_person_key] = {
        "canonical_name": "Unknown", "canonical_dob": None,
        "names": set(), "dobs": set(), "passport_numbers": set(),
        "doc_ids": {doc_id}, "display_name": f"Unknown Person ({doc_id[:6]})"
    }
    return generic_person_key

def format_dataframe_data(current_files_data):
    df_rows = []
    for f_data in current_files_data:
        entities = f_data.get("entities") or {} # CORRECTED LINE HERE
        df_rows.append([
            f_data.get("doc_id", "N/A")[:8],
            f_data.get("filename", "N/A"),
            f_data.get("status", "N/A"),
            entities.get("doc_type", "N/A"),
            entities.get("name", "N/A"),
            entities.get("dob", "N/A"),
            entities.get("passport_no", "N/A"),
            f_data.get("assigned_person_key", "N/A")
        ])
    return df_rows

def format_persons_markdown(current_persons_data, current_files_data):
    if not current_persons_data:
        return "No persons identified yet."
    md_parts = ["## Classified Persons & Documents\n"]
    for p_key, p_data in current_persons_data.items():
        display_name = p_data.get('display_name', p_key)
        md_parts.append(f"### Person: {display_name} (Profile Key: {p_key})")
        if p_data.get("canonical_dob"): md_parts.append(f"* DOB: {p_data['canonical_dob']}")
        if p_data.get("passport_numbers"): md_parts.append(f"* Passport(s): {', '.join(p_data['passport_numbers'])}")
        md_parts.append("* Documents:")
        doc_ids_for_person = p_data.get("doc_ids", set())
        if doc_ids_for_person:
            for doc_id in doc_ids_for_person:
                doc_detail = next((f for f in current_files_data if f["doc_id"] == doc_id), None)
                if doc_detail:
                    filename = doc_detail.get("filename", "Unknown File")
                    doc_entities = doc_detail.get("entities") or {}
                    doc_type = doc_entities.get("doc_type", "Unknown Type")
                    md_parts.append(f"  - {filename} (`{doc_type}`)")
                else:
                    md_parts.append(f"  - Document ID: {doc_id[:8]} (details error)")
        else:
            md_parts.append("  - No documents currently assigned.")
        md_parts.append("\n---\n")
    return "\n".join(md_parts)

def process_uploaded_files(files_list, progress=gr.Progress(track_tqdm=True)):
    global processed_files_data, person_profiles
    processed_files_data = []
    person_profiles = {}
    if not OPENROUTER_API_KEY:
        yield (
            [["N/A", "ERROR", "OpenRouter API Key not configured.", "N/A", "N/A", "N/A", "N/A", "N/A"]],
            "Error: OpenRouter API Key not configured. Please set it in Space Secrets.",
            "{}", "API Key Missing. Processing halted."
        )
        return
    if not files_list:
        yield ([], "No files uploaded.", "{}", "Upload files to begin.")
        return
    for i, file_obj in enumerate(files_list):
        doc_uid = str(uuid.uuid4())
        processed_files_data.append({
            "doc_id": doc_uid,
            "filename": os.path.basename(file_obj.name if hasattr(file_obj, 'name') else f"file_{i+1}.unknown"),
            "filepath": file_obj.name if hasattr(file_obj, 'name') else None, # file_obj itself is filepath if from gr.Files type="filepath"
            "status": "Queued",
            "ocr_json": None,
            "entities": None,
            "assigned_person_key": None
        })
    initial_df_data = format_dataframe_data(processed_files_data)
    initial_persons_md = format_persons_markdown(person_profiles, processed_files_data)
    yield (initial_df_data, initial_persons_md, "{}", f"Initialized. Found {len(files_list)} files.")
    for i, file_data_item in enumerate(progress.tqdm(processed_files_data, desc="Processing Documents")):
        current_doc_id = file_data_item["doc_id"]
        current_filename = file_data_item["filename"]
        if not file_data_item["filepath"]: # Check if filepath is valid
            file_data_item["status"] = "Error: Invalid file path"
            df_data = format_dataframe_data(processed_files_data)
            persons_md = format_persons_markdown(person_profiles, processed_files_data)
            yield(df_data, persons_md, "{}", f"({i+1}/{len(processed_files_data)}) Error with file {current_filename}")
            continue

        file_data_item["status"] = "OCR in Progress..."
        df_data = format_dataframe_data(processed_files_data)
        persons_md = format_persons_markdown(person_profiles, processed_files_data)
        yield (df_data, persons_md, "{}", f"({i+1}/{len(processed_files_data)}) OCR for: {current_filename}")
        ocr_result = call_openrouter_ocr(file_data_item["filepath"])
        file_data_item["ocr_json"] = ocr_result
        if "error" in ocr_result:
            file_data_item["status"] = f"OCR Error: {str(ocr_result['error'])[:50]}..."
            df_data = format_dataframe_data(processed_files_data)
            yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) OCR Error on {current_filename}")
            continue
        file_data_item["status"] = "OCR Done. Extracting Entities..."
        df_data = format_dataframe_data(processed_files_data)
        yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) OCR Done for {current_filename}")
        entities = extract_entities_from_ocr(ocr_result)
        file_data_item["entities"] = entities
        file_data_item["status"] = "Entities Extracted. Classifying..."
        df_data = format_dataframe_data(processed_files_data)
        yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) Entities for {current_filename}")
        person_key = get_person_id_and_update_profiles(current_doc_id, entities, person_profiles)
        file_data_item["assigned_person_key"] = person_key
        file_data_item["status"] = "Classified"
        df_data = format_dataframe_data(processed_files_data)
        persons_md = format_persons_markdown(person_profiles, processed_files_data)
        yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) Classified {current_filename} -> {person_key}")
    final_df_data = format_dataframe_data(processed_files_data)
    final_persons_md = format_persons_markdown(person_profiles, processed_files_data)
    yield (final_df_data, final_persons_md, "{}", f"All {len(processed_files_data)} documents processed.")

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 📄 Intelligent Document Processor & Classifier")
    gr.Markdown(
        "**Upload multiple documents (images of passports, bank statements, hotel reservations, photos, etc.). "
        "The system will perform OCR, attempt to extract key entities, and classify documents by the person they belong to.**\n"
        "Ensure `OPENROUTER_API_KEY` is set as a Secret in your Hugging Face Space."
    )
    if not OPENROUTER_API_KEY:
        gr.Markdown("<h3 style='color:red;'>⚠️ ERROR: `OPENROUTER_API_KEY` is not set in Space Secrets! OCR will fail.</h3>")
    with gr.Row():
        with gr.Column(scale=1):
            files_input = gr.Files(label="Upload Document Images (Bulk)", file_count="multiple", type="filepath") # Using filepath
            process_button = gr.Button("🚀 Process Uploaded Documents", variant="primary")
            overall_status_textbox = gr.Textbox(label="Overall Progress", interactive=False, lines=1)
    gr.Markdown("---")
    gr.Markdown("## Document Processing Details")
    dataframe_headers = ["Doc ID (short)", "Filename", "Status", "Detected Type", "Name", "DOB", "Passport No.", "Assigned Person Key"]
    document_status_df = gr.Dataframe(
        headers=dataframe_headers,
        datatype=["str"] * len(dataframe_headers),
        label="Individual Document Status & Extracted Entities",
        row_count=(1, "dynamic"), # Start with 1 row, dynamically grows
        col_count=(len(dataframe_headers), "fixed"),
        wrap=True
    )
    ocr_json_output = gr.Code(label="Selected Document OCR JSON", language="json", interactive=False)
    gr.Markdown("---")
    person_classification_output_md = gr.Markdown("## Classified Persons & Documents\nNo persons identified yet.")
    process_button.click(
        fn=process_uploaded_files,
        inputs=[files_input],
        outputs=[
            document_status_df,
            person_classification_output_md,
            ocr_json_output,
            overall_status_textbox
        ]
    )
    @document_status_df.select(inputs=None, outputs=ocr_json_output, show_progress="hidden")
    def display_selected_ocr(evt: gr.SelectData):
        if evt.index is None or evt.index[0] is None:
            return "{}"
        selected_row_index = evt.index[0]
        # Ensure processed_files_data is accessible here. If it's truly global, it should be.
        # For safety, one might pass it or make it part of a class if this were more complex.
        if 0 <= selected_row_index < len(processed_files_data):
            selected_doc_data = processed_files_data[selected_row_index]
            if selected_doc_data and selected_doc_data.get("ocr_json"):
                # Check if ocr_json is already a dict, if not, try to parse (though it should be)
                ocr_data_to_display = selected_doc_data["ocr_json"]
                if isinstance(ocr_data_to_display, str): # Should not happen if stored correctly
                    try:
                        ocr_data_to_display = json.loads(ocr_data_to_display)
                    except json.JSONDecodeError:
                        return json.dumps({"error": "Stored OCR data is not valid JSON string."}, indent=2)
                return json.dumps(ocr_data_to_display, indent=2, ensure_ascii=False)
        return json.dumps({ "message": "No OCR data found for selected row or selection out of bounds (check if processing is complete). Current rows: " + str(len(processed_files_data))}, indent=2)

if __name__ == "__main__":
    demo.queue().launch(debug=True, share=os.environ.get("GRADIO_SHARE", "true").lower() == "true")