File size: 21,563 Bytes
df5c908
3d827ec
ba14e67
3d827ec
ba14e67
 
 
 
6a6e280
3d827ec
ba14e67
 
 
3d827ec
 
ba14e67
 
 
 
 
3d827ec
 
 
ba14e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d827ec
 
 
 
 
ba14e67
3d827ec
ba14e67
 
 
 
3d827ec
 
ba14e67
3d827ec
 
 
 
ba14e67
 
3d827ec
 
 
 
 
ba14e67
3d827ec
ba14e67
3d827ec
ba14e67
 
 
 
 
 
 
 
 
 
 
 
 
0a8e31d
 
 
 
 
 
3d827ec
 
 
0a8e31d
 
ba14e67
e08f157
0a8e31d
 
3d827ec
 
ba14e67
 
0a8e31d
ba14e67
 
e08f157
3d827ec
ba14e67
3d827ec
ba14e67
 
3d827ec
ba14e67
 
3d827ec
ba14e67
3d827ec
 
ba14e67
3d827ec
ba14e67
3d827ec
ba14e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d827ec
ba14e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d827ec
ba14e67
 
 
 
 
 
 
 
 
 
3d827ec
ba14e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d827ec
ba14e67
3d827ec
ba14e67
 
 
3d827ec
ba14e67
3d827ec
ba14e67
 
3d827ec
 
ba14e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d827ec
ba14e67
 
 
 
 
 
 
3d827ec
ba14e67
 
 
 
 
 
 
 
3d827ec
df5c908
ba14e67
 
 
 
 
 
 
 
 
 
 
 
 
df5c908
1d51bfe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import gradio as gr
import base64
import requests
import json
import re
import os
import uuid
from datetime import datetime

# --- Configuration ---
# IMPORTANT: Set your OPENROUTER_API_KEY as a Hugging Face Space Secret
OPENROUTER_API_KEY = "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"
IMAGE_MODEL = "opengvlab/internvl3-14b:free" # Using the free tier model as specified
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"

# --- Global State (managed within Gradio's session if possible, or module-level for simplicity here) ---
# This will be reset each time the processing function is called.
# For a multi-user or more robust app, session state or a proper backend DB would be needed.
processed_files_data = [] # Stores dicts for each file's details and status
person_profiles = {}      # Stores dicts for each identified person and their documents

# --- Helper Functions ---

def extract_json_from_text(text):
    """
    Extracts a JSON object from a string, trying common markdown and direct JSON.
    """
    if not text:
        return {"error": "Empty text provided for JSON extraction."}

    # Try to match ```json ... ``` code block
    match_block = re.search(r"```json\s*(\{.*?\})\s*```", text, re.DOTALL | re.IGNORECASE)
    if match_block:
        json_str = match_block.group(1)
    else:
        # If no block, assume the text itself might be JSON or wrapped in single backticks
        text_stripped = text.strip()
        if text_stripped.startswith("`") and text_stripped.endswith("`"):
            json_str = text_stripped[1:-1]
        else:
            json_str = text_stripped # Assume it's direct JSON

    try:
        return json.loads(json_str)
    except json.JSONDecodeError as e:
        # Fallback: Try to find the first '{' and last '}' if initial parsing fails
        try:
            first_brace = json_str.find('{')
            last_brace = json_str.rfind('}')
            if first_brace != -1 and last_brace != -1 and last_brace > first_brace:
                potential_json_str = json_str[first_brace : last_brace+1]
                return json.loads(potential_json_str)
            else:
                return {"error": f"Invalid JSON structure: {str(e)}", "original_text": text}
        except json.JSONDecodeError as e2:
             return {"error": f"Invalid JSON structure after attempting substring: {str(e2)}", "original_text": text}


def get_ocr_prompt():
    return f"""You are an advanced OCR and information extraction AI.
Your task is to meticulously analyze this image and extract all relevant information.

Output Format Instructions:
Provide your response as a SINGLE, VALID JSON OBJECT. Do not include any explanatory text before or after the JSON.
The JSON object should have the following top-level keys:
- "document_type_detected": (string) Your best guess of the specific document type (e.g., "Passport", "National ID Card", "Driver's License", "Visa Sticker", "Hotel Confirmation Voucher", "Bank Statement", "Photo of a person").
- "extracted_fields": (object) A key-value map of all extracted information. Be comprehensive. Examples:
    - For passports/IDs: "Surname", "Given Names", "Full Name", "Document Number", "Nationality", "Date of Birth", "Sex", "Place of Birth", "Date of Issue", "Date of Expiry", "Issuing Authority", "Country Code".
    - For hotel reservations: "Guest Name", "Hotel Name", "Booking Reference", "Check-in Date", "Check-out Date".
    - For bank statements: "Account Holder Name", "Account Number", "Bank Name", "Statement Period", "Ending Balance".
    - For photos: "Description" (e.g., "Portrait of a person", "Group photo at a location"), "People Present" (array of strings if multiple).
- "mrz_data": (object or null) If a Machine Readable Zone (MRZ) is present:
    - "raw_mrz_lines": (array of strings) Each line of the MRZ.
    - "parsed_mrz": (object) Key-value pairs of parsed MRZ fields.
    If no MRZ, this field should be null.
- "full_text_ocr": (string) Concatenation of all text found on the document.

Extraction Guidelines:
1.  Prioritize accuracy.
2.  Extract all visible text. Include "Full Name" by combining given and surnames if possible.
3.  For dates, try to use ISO 8601 format (YYYY-MM-DD) if possible, but retain original format if conversion is ambiguous.

Ensure the entire output strictly adheres to the JSON format.
"""

def call_openrouter_ocr(image_filepath):
    if not OPENROUTER_API_KEY:
        return {"error": "OpenRouter API Key not configured."}
    try:
        with open(image_filepath, "rb") as f:
            encoded_image = base64.b64encode(f.read()).decode("utf-8")
        
        # Basic MIME type guessing, default to jpeg
        mime_type = "image/jpeg"
        if image_filepath.lower().endswith(".png"):
            mime_type = "image/png"
        elif image_filepath.lower().endswith(".webp"):
            mime_type = "image/webp"
            
        data_url = f"data:{mime_type};base64,{encoded_image}"
        prompt_text = get_ocr_prompt()

        payload = {
            "model": IMAGE_MODEL,
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt_text},
                        {"type": "image_url", "image_url": {"url": data_url}}
                    ]
                }
            ],
            "max_tokens": 3500, # Increased for detailed JSON
            "temperature": 0.1,
        }
        headers = {
            "Authorization": f"Bearer {OPENROUTER_API_KEY}",
            "Content-Type": "application/json",
            "HTTP-Referer": "https://huggingface.co/spaces/DoClassifier", # Optional: Update with your Space URL
            "X-Title": "DoClassifier Processor" # Optional
        }

        response = requests.post(OPENROUTER_API_URL, headers=headers, json=payload, timeout=180) # 3 min timeout
        response.raise_for_status()
        result = response.json()

        if "choices" in result and result["choices"]:
            raw_content = result["choices"][0]["message"]["content"]
            return extract_json_from_text(raw_content)
        else:
            return {"error": "No 'choices' in API response from OpenRouter.", "details": result}

    except requests.exceptions.Timeout:
        return {"error": "API request timed out."}
    except requests.exceptions.RequestException as e:
        error_message = f"API Request Error: {str(e)}"
        if hasattr(e, 'response') and e.response is not None:
            error_message += f" Status: {e.response.status_code}, Response: {e.response.text}"
        return {"error": error_message}
    except Exception as e:
        return {"error": f"An unexpected error occurred during OCR: {str(e)}"}

def extract_entities_from_ocr(ocr_json):
    if not ocr_json or "extracted_fields" not in ocr_json or not isinstance(ocr_json["extracted_fields"], dict):
        return {"name": None, "dob": None, "passport_no": None, "doc_type": ocr_json.get("document_type_detected", "Unknown")}

    fields = ocr_json["extracted_fields"]
    doc_type = ocr_json.get("document_type_detected", "Unknown")

    # Normalize potential field names (case-insensitive search)
    name_keys = ["full name", "name", "account holder name", "guest name"]
    dob_keys = ["date of birth", "dob"]
    passport_keys = ["document number", "passport number"]
    
    extracted_name = None
    for key in name_keys:
        for field_key, value in fields.items():
            if key == field_key.lower():
                extracted_name = str(value) if value else None
                break
        if extracted_name:
            break
            
    extracted_dob = None
    for key in dob_keys:
        for field_key, value in fields.items():
            if key == field_key.lower():
                extracted_dob = str(value) if value else None
                break
        if extracted_dob:
            break

    extracted_passport_no = None
    for key in passport_keys:
        for field_key, value in fields.items():
            if key == field_key.lower():
                extracted_passport_no = str(value).replace(" ", "").upper() if value else None # Normalize
                break
        if extracted_passport_no:
            break
            
    return {
        "name": extracted_name,
        "dob": extracted_dob,
        "passport_no": extracted_passport_no,
        "doc_type": doc_type
    }

def normalize_name(name):
    if not name: return ""
    return "".join(filter(str.isalnum, name)).lower()

def get_person_id_and_update_profiles(doc_id, entities, current_persons_data):
    """
    Tries to assign a document to an existing person or creates a new one.
    Returns a person_key.
    Updates current_persons_data in place.
    """
    passport_no = entities.get("passport_no")
    name = entities.get("name")
    dob = entities.get("dob")

    # 1. Match by Passport Number (strongest identifier)
    if passport_no:
        for p_key, p_data in current_persons_data.items():
            if passport_no in p_data.get("passport_numbers", set()):
                p_data["doc_ids"].add(doc_id)
                # Update person profile with potentially new name/dob if current is missing
                if name and not p_data.get("canonical_name"): p_data["canonical_name"] = name
                if dob and not p_data.get("canonical_dob"): p_data["canonical_dob"] = dob
                return p_key
        # New person based on passport number
        new_person_key = f"person_{passport_no}" # Or more robust ID generation
        current_persons_data[new_person_key] = {
            "canonical_name": name,
            "canonical_dob": dob,
            "names": {normalize_name(name)} if name else set(),
            "dobs": {dob} if dob else set(),
            "passport_numbers": {passport_no},
            "doc_ids": {doc_id},
            "display_name": name or f"Person (ID: {passport_no})"
        }
        return new_person_key

    # 2. Match by Normalized Name + DOB (if passport not found or not present)
    if name and dob:
        norm_name = normalize_name(name)
        composite_key_nd = f"{norm_name}_{dob}"
        for p_key, p_data in current_persons_data.items():
            # Check if this name and dob combo has been seen for this person
            if norm_name in p_data.get("names", set()) and dob in p_data.get("dobs", set()):
                p_data["doc_ids"].add(doc_id)
                return p_key
        # New person based on name and DOB
        new_person_key = f"person_{composite_key_nd}_{str(uuid.uuid4())[:4]}"
        current_persons_data[new_person_key] = {
            "canonical_name": name,
            "canonical_dob": dob,
            "names": {norm_name},
            "dobs": {dob},
            "passport_numbers": set(),
            "doc_ids": {doc_id},
            "display_name": name
        }
        return new_person_key
        
    # 3. If only name, less reliable, create new person (could add fuzzy matching later)
    if name:
        norm_name = normalize_name(name)
        # Check if a person with just this name exists and has no other strong identifiers yet
        # This part can be made more robust, for now, it might create more splits
        new_person_key = f"person_{norm_name}_{str(uuid.uuid4())[:4]}"
        current_persons_data[new_person_key] = {
            "canonical_name": name, "canonical_dob": None,
            "names": {norm_name}, "dobs": set(), "passport_numbers": set(),
            "doc_ids": {doc_id}, "display_name": name
        }
        return new_person_key

    # 4. Unclassifiable for now, assign a generic unique person key
    generic_person_key = f"unidentified_person_{str(uuid.uuid4())[:6]}"
    current_persons_data[generic_person_key] = {
        "canonical_name": "Unknown", "canonical_dob": None,
        "names": set(), "dobs": set(), "passport_numbers": set(),
        "doc_ids": {doc_id}, "display_name": f"Unknown Person ({doc_id[:6]})"
    }
    return generic_person_key


def format_dataframe_data(current_files_data):
    # Headers for the dataframe
    # "ID", "Filename", "Status", "Detected Type", "Extracted Name", "Extracted DOB", "Main ID", "Person Key"
    df_rows = []
    for f_data in current_files_data:
        entities = f_data.get("entities") or {}
        df_rows.append([
            f_data["doc_id"][:8], # Short ID
            f_data["filename"],
            f_data["status"],
            entities.get("doc_type", "N/A"),
            entities.get("name", "N/A"),
            entities.get("dob", "N/A"),
            entities.get("passport_no", "N/A"),
            f_data.get("assigned_person_key", "N/A")
        ])
    return df_rows

def format_persons_markdown(current_persons_data, current_files_data):
    if not current_persons_data:
        return "No persons identified yet."
    
    md_parts = ["## Classified Persons & Documents\n"]
    for p_key, p_data in current_persons_data.items():
        display_name = p_data.get('display_name', p_key)
        md_parts.append(f"### Person: {display_name} (Profile Key: {p_key})")
        if p_data.get("canonical_dob"): md_parts.append(f"* DOB: {p_data['canonical_dob']}")
        if p_data.get("passport_numbers"): md_parts.append(f"* Passport(s): {', '.join(p_data['passport_numbers'])}")
        
        md_parts.append("* Documents:")
        doc_ids_for_person = p_data.get("doc_ids", set())
        if doc_ids_for_person:
            for doc_id in doc_ids_for_person:
                # Find the filename and detected type from current_files_data
                doc_detail = next((f for f in current_files_data if f["doc_id"] == doc_id), None)
                if doc_detail:
                    filename = doc_detail["filename"]
                    doc_type = doc_detail.get("entities", {}).get("doc_type", "Unknown Type")
                    md_parts.append(f"  - {filename} (`{doc_type}`)")
                else:
                    md_parts.append(f"  - Document ID: {doc_id[:8]} (details not found, unexpected)")
        else:
            md_parts.append("  - No documents currently assigned.")
        md_parts.append("\n---\n")
    return "\n".join(md_parts)

# --- Main Gradio Processing Function (Generator) ---
def process_uploaded_files(files_list, progress=gr.Progress(track_tqdm=True)):
    global processed_files_data, person_profiles # Reset global state for each run
    processed_files_data = []
    person_profiles = {}

    if not OPENROUTER_API_KEY:
        yield (
            [["N/A", "ERROR", "OpenRouter API Key not configured.", "N/A", "N/A", "N/A", "N/A", "N/A"]],
            "Error: OpenRouter API Key not configured. Please set it in Space Secrets.",
            "{}", "API Key Missing. Processing halted."
        )
        return

    if not files_list:
        yield ([], "No files uploaded.", "{}", "Upload files to begin.")
        return

    # Initialize processed_files_data
    for i, file_obj in enumerate(files_list):
        doc_uid = str(uuid.uuid4())
        processed_files_data.append({
            "doc_id": doc_uid,
            "filename": os.path.basename(file_obj.name), # file_obj.name is the temp path
            "filepath": file_obj.name,
            "status": "Queued",
            "ocr_json": None,
            "entities": None,
            "assigned_person_key": None
        })

    initial_df_data = format_dataframe_data(processed_files_data)
    initial_persons_md = format_persons_markdown(person_profiles, processed_files_data)
    yield (initial_df_data, initial_persons_md, "{}", f"Initialized. Found {len(files_list)} files.")

    # Iterate and process each file
    for i, file_data_item in enumerate(progress.tqdm(processed_files_data, desc="Processing Documents")):
        current_doc_id = file_data_item["doc_id"]
        current_filename = file_data_item["filename"]
        
        # 1. OCR Processing
        file_data_item["status"] = "OCR in Progress..."
        df_data = format_dataframe_data(processed_files_data)
        persons_md = format_persons_markdown(person_profiles, processed_files_data) # No change yet
        yield (df_data, persons_md, "{}", f"({i+1}/{len(processed_files_data)}) OCR for: {current_filename}")

        ocr_result = call_openrouter_ocr(file_data_item["filepath"])
        file_data_item["ocr_json"] = ocr_result # Store full JSON

        if "error" in ocr_result:
            file_data_item["status"] = f"OCR Error: {ocr_result['error'][:50]}..." # Truncate long errors
            df_data = format_dataframe_data(processed_files_data)
            yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) OCR Error on {current_filename}")
            continue # Move to next file
        
        file_data_item["status"] = "OCR Done. Extracting Entities..."
        df_data = format_dataframe_data(processed_files_data)
        yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) OCR Done for {current_filename}")

        # 2. Entity Extraction
        entities = extract_entities_from_ocr(ocr_result)
        file_data_item["entities"] = entities
        file_data_item["status"] = "Entities Extracted. Classifying..."
        df_data = format_dataframe_data(processed_files_data) # Now entities will show up
        yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) Entities for {current_filename}")

        # 3. Person Classification / Linking
        person_key = get_person_id_and_update_profiles(current_doc_id, entities, person_profiles)
        file_data_item["assigned_person_key"] = person_key
        file_data_item["status"] = "Classified"
        
        df_data = format_dataframe_data(processed_files_data)
        persons_md = format_persons_markdown(person_profiles, processed_files_data) # Now persons_md updates
        yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"({i+1}/{len(processed_files_data)}) Classified {current_filename} -> {person_key}")

    final_df_data = format_dataframe_data(processed_files_data)
    final_persons_md = format_persons_markdown(person_profiles, processed_files_data)
    yield (final_df_data, final_persons_md, "{}", f"All {len(processed_files_data)} documents processed.")


# --- Gradio UI Layout ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 📄 Intelligent Document Processor & Classifier")
    gr.Markdown(
        "**Upload multiple documents (images of passports, bank statements, hotel reservations, photos, etc.). "
        "The system will perform OCR, attempt to extract key entities, and classify documents by the person they belong to.**\n"
        "Ensure `OPENROUTER_API_KEY` is set as a Secret in your Hugging Face Space."
    )

    if not OPENROUTER_API_KEY:
        gr.Markdown("<h3 style='color:red;'>⚠️ ERROR: `OPENROUTER_API_KEY` is not set in Space Secrets! OCR will fail.</h3>")

    with gr.Row():
        with gr.Column(scale=1):
            files_input = gr.Files(label="Upload Document Images (Bulk)", file_count="multiple", type="filepath")
            process_button = gr.Button("Process Uploaded Documents", variant="primary")
            overall_status_textbox = gr.Textbox(label="Overall Progress", interactive=False, lines=1)
        
    gr.Markdown("---")
    gr.Markdown("## Document Processing Details")
    # "ID", "Filename", "Status", "Detected Type", "Extracted Name", "Extracted DOB", "Main ID", "Person Key"
    dataframe_headers = ["Doc ID (short)", "Filename", "Status", "Detected Type", "Name", "DOB", "Passport No.", "Assigned Person Key"]
    document_status_df = gr.Dataframe(
        headers=dataframe_headers,
        datatype=["str"] * len(dataframe_headers), # All as strings for display simplicity
        label="Individual Document Status & Extracted Entities",
        row_count=(0, "dynamic"), # Start empty, dynamically grows
        col_count=(len(dataframe_headers), "fixed"),
        wrap=True
    )
    
    ocr_json_output = gr.Code(label="Selected Document OCR JSON", language="json", interactive=False)

    gr.Markdown("---")
    person_classification_output_md = gr.Markdown("## Classified Persons & Documents\nNo persons identified yet.")

    # Event Handlers
    process_button.click(
        fn=process_uploaded_files,
        inputs=[files_input],
        outputs=[
            document_status_df,
            person_classification_output_md,
            ocr_json_output, # Temporarily show last OCR here, better if select event works
            overall_status_textbox
        ]
    )

    @document_status_df.select(inputs=None, outputs=ocr_json_output, show_progress="hidden")
    def display_selected_ocr(evt: gr.SelectData):
        if evt.index is None or evt.index[0] is None: # evt.index is (row, col)
            return "{}" # Nothing selected or invalid selection
        
        selected_row_index = evt.index[0]
        if selected_row_index < len(processed_files_data):
            selected_doc_data = processed_files_data[selected_row_index]
            if selected_doc_data and selected_doc_data["ocr_json"]:
                return json.dumps(selected_doc_data["ocr_json"], indent=2)
        return "{ \"message\": \"No OCR data found for selected row or selection out of bounds.\" }"


if __name__ == "__main__":
    demo.queue().launch(debug=True,share=True) # Use queue for longer processes, share=True for Spaces