Spaces:
Running
Running
File size: 6,086 Bytes
844d2b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from flask import Flask, request, jsonify, send_from_directory
import pickle
import torch
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from transformers import DistilBertTokenizer, DistilBertModel
import torch.nn as nn
import os
import numpy
# Download NLTK stuff
nltk.data.path.append('/usr/local/share/nltk_data')
nltk.download('punkt_tab')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('punkt')
app = Flask(__name__, static_folder='build', static_url_path='')
# Define DistilBERT model class
class DistilBERTClassifier(nn.Module):
def __init__(self, dropout_rate=0.2):
super(DistilBERTClassifier, self).__init__()
self.distilbert = DistilBertModel.from_pretrained('distilbert-base-uncased')
self.dropout = nn.Dropout(dropout_rate)
self.classifier = nn.Linear(768, 2)
def forward(self, input_ids, attention_mask):
outputs = self.distilbert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs.last_hidden_state[:, 0]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
# Clean text function
def clean_text(text):
text = text.lower()
text = re.sub(r'http\S+|www\S+|https\S+', '', text)
text = re.sub(r'<.*?>', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\d+', '', text)
tokens = nltk.word_tokenize(text)
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
cleaned_text = ' '.join(tokens)
return cleaned_text
# Load models
def load_models():
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# TF-IDF vectorizer
with open('models/tfidf_vectorizer.pkl', 'rb') as f:
tfidf_vectorizer = pickle.load(f)
# Logistic Regression
with open('models/lr_model.pkl', 'rb') as f:
lr_model = pickle.load(f)
# random Forest
with open('models/rf_model.pkl', 'rb') as f:
rf_model = pickle.load(f)
# load DistilBERT
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
distilbert_model = DistilBERTClassifier()
distilbert_model.load_state_dict(torch.load('models/distilbert_model.pt', map_location=device))
distilbert_model.to(device)
distilbert_model.eval()
return tfidf_vectorizer, lr_model, rf_model, distilbert_model, tokenizer, device
# Load models at startup
tfidf_vectorizer, lr_model, rf_model, distilbert_model, tokenizer, device = load_models()
@app.route('/')
def serve():
return send_from_directory(app.static_folder, 'index.html')
@app.route('/api/analyze', methods=['POST'])
def analyze():
data = request.get_json()
if not data or 'text' not in data or 'model' not in data:
return jsonify({'error': 'Missing required fields'}), 400
news_text = data['text']
model_option = data['model']
if not news_text:
return jsonify({'error': 'Text cannot be empty'}), 400
# Clean text
cleaned_text = clean_text(news_text)
results = {}
# Using Logistic Regression
if model_option in ["lr", "all"]:
text_tfidf = tfidf_vectorizer.transform([cleaned_text])
lr_pred = lr_model.predict(text_tfidf)[0]
lr_prob = lr_model.predict_proba(text_tfidf)[0]
results["Logistic Regression"] = {
"prediction": "Real" if lr_pred == 1 else "Fake",
"fake_prob": float(lr_prob[0]),
"real_prob": float(lr_prob[1])
}
# Using Random Forest
if model_option in ["rf", "all"]:
text_tfidf = tfidf_vectorizer.transform([cleaned_text])
rf_pred = rf_model.predict(text_tfidf)[0]
rf_prob = rf_model.predict_proba(text_tfidf)[0]
results["Random Forest"] = {
"prediction": "Real" if rf_pred == 1 else "Fake",
"fake_prob": float(rf_prob[0]),
"real_prob": float(rf_prob[1])
}
# Using DistilBERT
if model_option in ["distilbert", "all"]:
encoding = tokenizer(
cleaned_text,
truncation=True,
padding='max_length',
max_length=128,
return_tensors='pt'
)
with torch.no_grad():
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
outputs = distilbert_model(input_ids=input_ids, attention_mask=attention_mask)
print("Raw model output:", outputs.cpu().numpy())
probs = torch.softmax(outputs, dim=1).cpu().numpy()[0]
print("After softmax:", probs)
print(f"Text: {cleaned_text[:50]}...")
print(f"Probabilities: Real={probs[0]:.4f}, Fake={probs[1]:.4f}")
distilbert_pred = 1 if probs[1] > probs[0] else 0
results["DistilBERT"] = {
"prediction": "Real" if distilbert_pred == 1 else "Fake",
"fake_prob": float(probs[0]),
"real_prob": float(probs[1])
}
# Calculate overall results for "all models" option
if model_option == "all":
real_votes = sum(1 for model, result in results.items() if result["prediction"] == "Real")
fake_votes = len(results) - real_votes
overall_verdict = "Real" if real_votes >= fake_votes else "Fake"
results["Overall"] = {
"prediction": overall_verdict,
"real_votes": real_votes,
"fake_votes": fake_votes,
"total_models": len(results)
}
return jsonify({'results': results})
if __name__ == '__main__':
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port) |