Spaces:
Runtime error
Runtime error
File size: 5,302 Bytes
58cb744 943d293 58cb744 683d956 943d293 58cb744 e3bd5d9 58cb744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import together
import os
# set your API key
together.api_key = "c9909567768fbf1a69fbd94c758e432f0a05a6755c32dced992ac6640a8cfd79"
# list available models and descriptons
models = together.Models.list()
together.Models.start("togethercomputer/llama-2-7b-chat")
from langchain.llms import Together
llm = Together(
model="togethercomputer/llama-2-7b-chat",
temperature=0.7,
max_tokens=128,
top_k=1,
together_api_key="c9909567768fbf1a69fbd94c758e432f0a05a6755c32dced992ac6640a8cfd79"
)
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
pdf_path = os.path.join(os.path.dirname(__file__), 'Production-Table - Sheet1 (2).pdf')
loader = PyPDFLoader(pdf_path)
documents = loader.load()
#splitting the text into
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model_norm = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs={'device': 'cuda'},
encode_kwargs=encode_kwargs
)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
## Here is the nmew embeddings being used
embedding = model_norm
vectordb = Chroma.from_documents(documents=texts,
embedding=embedding,
persist_directory=persist_directory)
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
## Default LLaMA-2 prompt style
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant of a production company. You should honestly answer the user's query using the knowledge of the company's production documents uploaded.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
def get_prompt(instruction, new_system_prompt=DEFAULT_SYSTEM_PROMPT ):
SYSTEM_PROMPT = B_SYS + new_system_prompt + E_SYS
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
return prompt_template
sys_prompt = """You are a helpful, respectful and honest assistant of a production company. You should honestly answer the user's query using the knowledge of the company's production documents uploaded.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
instruction = """CONTEXT:/n/n {context}/n
Question: {question}"""
get_prompt(instruction, sys_prompt)
from langchain.prompts import PromptTemplate
prompt_template = get_prompt(instruction, sys_prompt)
llama_prompt = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": llama_prompt}
from langchain.schema import prompt
# create the chain to answer questions
qa_chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs=chain_type_kwargs,
return_source_documents=True)
## Cite sources
import textwrap
def wrap_text_preserve_newlines(text, width=110):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
print(wrap_text_preserve_newlines(llm_response['result']))
print('\n\nSources:')
for source in llm_response["source_documents"]:
print(source.metadata['source'])
import gradio as gr
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
print("Question: ", history[-1][0])
#wrap_text_preserve_newlines(llm_response['result'])
#bot_message = process_llm_response(qa_chain(history[-1][0]))
bot_message = wrap_text_preserve_newlines((qa_chain(history[-1][0]))['result'])
print("Response: ", bot_message)
history[-1][1] = ""
history[-1][1] += bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch(debug = True) |