Spaces:
Sleeping
Sleeping
File size: 3,546 Bytes
c500a02 2b3497a 8a99e88 59387da d4eb272 0054165 d4eb272 0054165 d4eb272 0054165 d4eb272 0054165 d4eb272 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da 3c223c5 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da d4eb272 59387da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import streamlit as st
# Function to display lifecycle descriptions
def display_lifecycle_stage(stage_name, description):
st.subheader(stage_name)
st.write(description)
# Title
st.title("Enhanced Machine Learning Life Cycle")
# Markdown Diagram with Shapes and Colors
st.markdown(
"""
<style>
.shape-box {
background-color: rgba(255, 221, 193, 0.8);
padding: 10px;
border-radius: 5px;
text-align: center;
margin-bottom: 10px;
}
.shape-circle {
background-color: rgba(193, 225, 255, 0.8);
padding: 10px;
border-radius: 50%;
text-align: center;
margin-bottom: 10px;
}
.shape-diamond {
background-color: rgba(193, 255, 193, 0.8);
padding: 10px;
clip-path: polygon(50% 0%, 100% 50%, 50% 100%, 0% 50%);
text-align: center;
margin-bottom: 10px;
}
</style>
<div class="shape-box">Problem Statement</div>
<div class="shape-circle">Data Collection</div>
<div class="shape-box">Simple EDA</div>
<div class="shape-diamond">Data Preprocessing</div>
<div class="shape-box">EDA</div>
<div class="shape-circle">Feature Engineering</div>
<div class="shape-box">Training</div>
<div class="shape-diamond">Testing</div>
<div class="shape-box">Deploying</div>
<div class="shape-circle">Monitoring</div>
""",
unsafe_allow_html=True,
)
# Buttons for each stage
st.markdown("### Select a Lifecycle Stage to Learn More:")
col1, col2 = st.columns(2)
with col1:
if st.button("Problem Statement"):
display_lifecycle_stage(
"Problem Statement",
"Defining the problem and setting objectives for the machine learning project."
)
if st.button("Simple EDA"):
display_lifecycle_stage(
"Simple EDA",
"Performing initial exploratory data analysis to understand data distribution and trends."
)
if st.button("EDA"):
display_lifecycle_stage(
"EDA",
"Detailed exploratory data analysis for deeper insights into data patterns."
)
if st.button("Training"):
display_lifecycle_stage(
"Training",
"Fitting the model using the training dataset to learn patterns and relationships."
)
if st.button("Deploying"):
display_lifecycle_stage(
"Deploying",
"Deploying the trained model to production for real-world use."
)
with col2:
if st.button("Data Collection"):
st.switch_page("pages/Data_Collection.py")
display_lifecycle_stage(
"Data Collection",
"Gathering the data required for the machine learning project."
)
if st.button("Data Preprocessing"):
display_lifecycle_stage(
"Data Preprocessing",
"Cleaning and transforming the data to prepare it for analysis."
)
if st.button("Feature Engineering"):
display_lifecycle_stage(
"Feature Engineering",
"Creating new features or modifying existing ones to improve model performance."
)
if st.button("Testing"):
display_lifecycle_stage(
"Testing",
"Evaluating the model's performance using a separate testing dataset."
)
if st.button("Monitoring"):
display_lifecycle_stage(
"Monitoring",
"Monitoring the deployed model's performance and maintaining its accuracy."
)
|