Spaces:
Sleeping
Sleeping
File size: 10,740 Bytes
c99a549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import streamlit as st
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langchain_huggingface import HuggingFaceEndpoint
import numpy as np
from pydub import AudioSegment
import os
from langchain.memory import ConversationBufferWindowMemory
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
# Set the page configuration first
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
# Fixed conversational memory length
memory_length = 5
memory = ConversationBufferWindowMemory(k=memory_length, memory_key="chat_history", return_messages=True)
# Model IDs
model_id = "Sasmitah/llama_16bit_2"
model2_id = "meta-llama/Llama-3.2-3B-Instruct"
whisper_model = "openai/whisper-small" # Using Whisper model for audio transcription
model1 = AutoModelForAudioClassification.from_pretrained("ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
def predict_emotion(audio_file):
if not audio_file:
return "No audio file provided!"
sound = AudioSegment.from_file(audio_file)
sound = sound.set_frame_rate(16000)
sound_array = np.array(sound.get_array_of_samples())
input = feature_extractor(
raw_speech=sound_array,
sampling_rate=16000,
padding=True,
return_tensors="pt")
result = model1.forward(input.input_values.float())
id2label = {
"0": "angry",
"1": "calm",
"2": "disgust",
"3": "fearful",
"4": "happy",
"5": "neutral",
"6": "sad",
"7": "surprised"
}
# Map result to emotion labels with probabilities
emotion_scores = dict(zip(id2label.values(), list(round(float(i),4) for i in result[0][0])))
return emotion_scores
def get_llm_hf_inference(model_id, max_new_tokens=128, temperature=0.5):
"""Returns a language model for HuggingFace inference."""
try:
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN")
)
return llm
except Exception as e:
st.error(f"Error initializing model: {e}")
return None
def load_transcription_model():
try:
transcriber = pipeline("automatic-speech-recognition", model=whisper_model)
return transcriber
except Exception as e:
st.error(f"Error loading Whisper model: {e}")
return None
def preprocess_audio(file):
audio = AudioSegment.from_file(file).set_frame_rate(16000).set_channels(1)
audio_samples = np.array(audio.get_array_of_samples()).astype(np.float32) / (2**15)
return audio_samples
def transcribe_audio(file, transcriber):
audio = preprocess_audio(file)
transcription = transcriber(audio)["text"]
return transcription
def display_chatbot():
st.title("Personal Therapist Chatbot")
st.markdown(
"""
🔒 *Disclaimer:* Please do not share any personal, sensitive, or confidential information during your interaction with this chatbot. This tool is for informational and supportive purposes only, and any data shared is not stored or monitored to protect your privacy.
"""
)
with st.sidebar:
reset_history = st.button("Reset Chat History")
go_home = st.button("Back to Home")
if go_home:
st.session_state.page = "home"
if reset_history:
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
st.session_state.user_text = None
st.session_state.avatars = {'user': None, 'assistant': None}
st.session_state.max_response_length = 1000
def get_response(system_message, chat_history, user_text, model_id, max_new_tokens=256):
"""Generates a response from the chatbot model."""
hf = get_llm_hf_inference(model_id=model_id, max_new_tokens=max_new_tokens)
if hf is None:
return "Error: Model not initialized.", chat_history
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nPatient: {user_text}.\n [/INST]"
"\ntherapist:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1].strip()
low_engagement_threshold = 3
end_keywords = ["thank you", "thanks", "goodbye", "bye", "that's all"]
short_responses = len(user_text.split()) <= low_engagement_threshold
end_pattern_match = any(keyword in user_text.lower() for keyword in end_keywords)
recent_short_responses = all(len(msg["content"].split()) <= low_engagement_threshold for msg in chat_history[-2:])
response_is_acknowledgment = user_text.lower() in ["yes", "okay", "alright"]
if (end_pattern_match or (short_responses and recent_short_responses)) and not response_is_acknowledgment:
follow_up_question = "Would you like to have a report of your current health? Yes/No"
response = f"I’m glad to hear that. Let’s keep checking in on this, and you can tell me how it goes next time."
response += f"\n\n{follow_up_question}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
return response, chat_history
def get_summary_of_chat_history(chat_history, model2_id):
"""Generates a comprehensive summary of the chat history and a health report."""
hf = get_llm_hf_inference(model_id=model2_id, max_new_tokens=256)
if hf is None:
return "Error: Model not initialized."
chat_content = "\n".join([f"{message['role']}: {message['content']}" for message in chat_history])
prompt = PromptTemplate.from_template(
f"""
Generate a detailed report based on the following conversation between a therapist and patient.
Conversation:\n{chat_content}
The report should include:
1. *Patient Information:*
- Include placeholders for Name, Age, Gender, Date of Session.
2. *Conversation Summary:*
- Summarize the main points of the conversation, focusing on the patient’s primary concerns and emotional state.
- Note any specific causes of stress or distress, how these issues affect the patient's personal life, and their expressed desires or goals.
3. *Preliminary Diagnosis:*
- Identify the main symptoms observed in the conversation, such as mood, energy levels, motivation, etc.
- Suggest a potential preliminary diagnosis based on the symptoms described, e.g., stress-induced burnout or other relevant concerns. Mention the need for further assessment if applicable.
4. *Recommendations & Strategies:*
- Provide practical, achievable strategies tailored to the patient’s needs.
Format the report neatly with headings and subheadings as shown in the example. Aim to keep the language supportive and professional.
"""
)
summary = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
summary_response = summary.invoke(input={"chat_content": chat_content})
return summary_response
transcriber = load_transcription_model()
input_type = st.radio("Select your input type", ("Text", "Audio"))
if input_type == "Text":
st.session_state.user_text = st.text_input("Enter your text here:")
elif input_type == "Audio":
audio_file = st.file_uploader("Upload an audio file for transcription", type=["mp3", "wav", "m4a"])
if audio_file is not None and transcriber:
with st.spinner("Transcribing audio..."):
try:
st.session_state.user_text = transcribe_audio(audio_file, transcriber)
st.success("Audio transcribed successfully!")
st.audio(audio_file, format='audio/mp3')
emotion_result = predict_emotion(audio_file)
predicted_emotion = max(emotion_result, key=emotion_result.get)
st.write(f"Most likely emotion: {predicted_emotion.capitalize()}")
except Exception as e:
st.error(f"Error transcribing audio: {e}")
output_container = st.container()
with output_container:
for message in st.session_state.chat_history:
if message['role'] == 'system':
continue
with st.chat_message(message['role'], avatar=st.session_state['avatars'][message['role']]):
st.markdown(message['content'])
if st.session_state.user_text:
with st.chat_message("user", avatar=st.session_state.avatars['user']):
st.markdown(st.session_state.user_text)
with st.chat_message("assistant", avatar=st.session_state.avatars['assistant']):
response = st.session_state.chat_history[-1]['content'] if len(st.session_state.chat_history) > 2 else st.session_state.starter_message
if "yes" in st.session_state.user_text.lower() and "Would you like to have a report of your current health? Yes/No" in response:
with st.spinner("Generating your health report..."):
report = get_summary_of_chat_history(st.session_state.chat_history, model2_id)
st.markdown(report)
with st.spinner("Addressing your concerns..."):
response, st.session_state.chat_history = get_response(
system_message=st.session_state.system_message,
user_text=st.session_state.user_text,
chat_history=st.session_state.chat_history,
model_id=model_id,
max_new_tokens=st.session_state.max_response_length,
)
st.markdown(response) |