File size: 9,810 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# -----------------------------------------------------
# Copyright (c) Shanghai Jiao Tong University. All rights reserved.
# Written by Jiefeng Li (jeff.lee.sjtu@gmail.com)
# -----------------------------------------------------

import numpy as np
import torch
import scipy.misc
import torch.nn.functional as F
import cv2
from opt import opt


RED = (0, 0, 255)
GREEN = (0, 255, 0)
BLUE = (255, 0, 0)
CYAN = (255, 255, 0)
YELLOW = (0, 255, 255)
ORANGE = (0, 165, 255)
PURPLE = (255, 0, 255)


def im_to_torch(img):
    img = np.transpose(img, (2, 0, 1))  # C*H*W
    img = to_torch(img).float()
    if img.max() > 1:
        img /= 255
    return img


def torch_to_im(img):
    img = to_numpy(img)
    img = np.transpose(img, (1, 2, 0))  # C*H*W
    return img


def load_image(img_path):
    # H x W x C => C x H x W
    return im_to_torch(scipy.misc.imread(img_path, mode='RGB'))


def to_numpy(tensor):
    if torch.is_tensor(tensor):
        return tensor.cpu().numpy()
    elif type(tensor).__module__ != 'numpy':
        raise ValueError("Cannot convert {} to numpy array"
                         .format(type(tensor)))
    return tensor


def to_torch(ndarray):
    if type(ndarray).__module__ == 'numpy':
        return torch.from_numpy(ndarray)
    elif not torch.is_tensor(ndarray):
        raise ValueError("Cannot convert {} to torch tensor"
                         .format(type(ndarray)))
    return ndarray


def drawGaussian(img, pt, sigma):
    img = to_numpy(img)
    tmpSize = 3 * sigma
    # Check that any part of the gaussian is in-bounds
    ul = [int(pt[0] - tmpSize), int(pt[1] - tmpSize)]
    br = [int(pt[0] + tmpSize + 1), int(pt[1] + tmpSize + 1)]

    if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or
            br[0] < 0 or br[1] < 0):
        # If not, just return the image as is
        return to_torch(img)

    # Generate gaussian
    size = 2 * tmpSize + 1
    x = np.arange(0, size, 1, float)
    y = x[:, np.newaxis]
    x0 = y0 = size // 2
    sigma = size / 4.0
    # The gaussian is not normalized, we want the center value to equal 1
    g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))

    # Usable gaussian range
    g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
    g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
    # Image range
    img_x = max(0, ul[0]), min(br[0], img.shape[1])
    img_y = max(0, ul[1]), min(br[1], img.shape[0])

    img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
    return to_torch(img)


def transformBox(pt, ul, br, inpH, inpW, resH, resW):
    center = torch.zeros(2)
    center[0] = (br[0] - 1 - ul[0]) / 2
    center[1] = (br[1] - 1 - ul[1]) / 2

    lenH = max(br[1] - ul[1], (br[0] - ul[0]) * inpH / inpW)
    lenW = lenH * inpW / inpH

    _pt = torch.zeros(2)
    _pt[0] = pt[0] - ul[0]
    _pt[1] = pt[1] - ul[1]
    # Move to center
    _pt[0] = _pt[0] + max(0, (lenW - 1) / 2 - center[0])
    _pt[1] = _pt[1] + max(0, (lenH - 1) / 2 - center[1])
    pt = (_pt * resH) / lenH
    pt[0] = round(float(pt[0]))
    pt[1] = round(float(pt[1]))
    return pt.int()


def transformBoxInvert(pt, ul, br, inpH, inpW, resH, resW):
    center = torch.zeros(2)
    center[0] = (br[0] - 1 - ul[0]) / 2
    center[1] = (br[1] - 1 - ul[1]) / 2

    lenH = max(br[1] - ul[1], (br[0] - ul[0]) * inpH / inpW)
    lenW = lenH * inpW / inpH

    _pt = (pt * lenH) / resH
    _pt[0] = _pt[0] - max(0, (lenW - 1) / 2 - center[0])
    _pt[1] = _pt[1] - max(0, (lenH - 1) / 2 - center[1])

    new_point = torch.zeros(2)
    new_point[0] = _pt[0] + ul[0]
    new_point[1] = _pt[1] + ul[1]
    return new_point


def cropBox(img, ul, br, resH, resW):
    ul = ul.int()
    br = (br - 1).int()
    # br = br.int()
    lenH = max((br[1] - ul[1]).item(), (br[0] - ul[0]).item() * resH / resW)
    lenW = lenH * resW / resH
    if img.dim() == 2:
        img = img[np.newaxis, :]

    box_shape = [br[1] - ul[1], br[0] - ul[0]]
    pad_size = [(lenH - box_shape[0]) // 2, (lenW - box_shape[1]) // 2]
    # Padding Zeros
    img[:, :ul[1], :], img[:, :, :ul[0]] = 0, 0
    img[:, br[1] + 1:, :], img[:, :, br[0] + 1:] = 0, 0

    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)

    src[0, :] = np.array([ul[0] - pad_size[1], ul[1] - pad_size[0]], np.float32)
    src[1, :] = np.array([br[0] + pad_size[1], br[1] + pad_size[0]], np.float32)
    dst[0, :] = 0
    dst[1, :] = np.array([resW - 1, resH - 1], np.float32)

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    dst_img = cv2.warpAffine(torch_to_im(img), trans,
                             (resW, resH), flags=cv2.INTER_LINEAR)

    return im_to_torch(torch.Tensor(dst_img))


def cv_rotate(img, rot, resW, resH):

    center = np.array((resW - 1, resH - 1)) / 2
    rot_rad = np.pi * rot / 180

    src_dir = get_dir([0, (resH - 1) * -0.5], rot_rad)
    dst_dir = np.array([0, (resH - 1) * -0.5], np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)

    src[0, :] = center
    src[1, :] = center + src_dir
    dst[0, :] = [(resW - 1) * 0.5, (resH - 1) * 0.5]
    dst[1, :] = np.array([(resW - 1) * 0.5, (resH - 1) * 0.5]) + dst_dir

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    dst_img = cv2.warpAffine(torch_to_im(img), trans,
                             (resW, resH), flags=cv2.INTER_LINEAR)

    return im_to_torch(torch.Tensor(dst_img))


def flip(x):
    assert (x.dim() == 3 or x.dim() == 4)
    if '0.4.1' in torch.__version__:
        dim = x.dim() - 1

        return x.flip(dims=(dim,))
    else:
        is_cuda = False
        if x.is_cuda:
            x = x.cpu()
            is_cuda = True
        x = x.numpy().copy()
        if x.ndim == 3:
            x = np.transpose(np.fliplr(np.transpose(x, (0, 2, 1))), (0, 2, 1))
        elif x.ndim == 4:
            for i in range(x.shape[0]):
                x[i] = np.transpose(
                    np.fliplr(np.transpose(x[i], (0, 2, 1))), (0, 2, 1))
        x = torch.from_numpy(x.copy())
        if is_cuda:
            x = x
    return x


def shuffleLR(x, dataset):
    flipRef = dataset.flipRef
    assert (x.dim() == 3 or x.dim() == 4)
    for pair in flipRef:
        dim0, dim1 = pair
        dim0 -= 1
        dim1 -= 1
        if x.dim() == 4:
            tmp = x[:, dim1].clone()
            x[:, dim1] = x[:, dim0].clone()
            x[:, dim0] = tmp.clone()
            #x[:, dim0], x[:, dim1] = deepcopy((x[:, dim1], x[:, dim0]))
        else:
            tmp = x[dim1].clone()
            x[dim1] = x[dim0].clone()
            x[dim0] = tmp.clone()
            #x[dim0], x[dim1] = deepcopy((x[dim1], x[dim0]))
    return x


def vis_frame(frame, im_res, format='coco'):
    '''
    frame: frame image
    im_res: im_res of predictions
    format: coco or mpii

    return rendered image
    '''
    if format == 'coco':
        l_pair = [
            (0, 1), (0, 2), (1, 3), (2, 4),  # Head
            (5, 6), (5, 7), (7, 9), (6, 8), (8, 10),
            (5, 11), (6, 12),  # Body
            (11, 13), (12, 14), (13, 15), (14, 16)
        ]
        p_color = [RED, RED, RED, RED, RED, YELLOW, YELLOW, YELLOW,
                   YELLOW, YELLOW, YELLOW, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN]
        line_color = [YELLOW, YELLOW, YELLOW, YELLOW, BLUE, BLUE,
                      BLUE, BLUE, BLUE, PURPLE, PURPLE, RED, RED, RED, RED]
    elif format == 'mpii':
        l_pair = [
            (8, 9), (11, 12), (11, 10), (2, 1), (1, 0),
            (13, 14), (14, 15), (3, 4), (4, 5),
            (8, 7), (7, 6), (6, 2), (6, 3), (8, 12), (8, 13)
        ]
        p_color = [PURPLE, BLUE, BLUE, RED, RED, BLUE, BLUE, RED,
                   RED, PURPLE, PURPLE, PURPLE, RED, RED, BLUE, BLUE]
        line_color = [PURPLE, BLUE, BLUE, RED, RED, BLUE, BLUE,
                      RED, RED, PURPLE, PURPLE, RED, RED, BLUE, BLUE]
    else:
        raise NotImplementedError

    im_name = im_res['imgname'].split('/')[-1]
    img = frame.copy()
    for human in im_res['result']:
        part_line = {}
        kp_preds = human['keypoints']
        kp_scores = human['kp_score']
        # Draw keypoints
        for n in range(kp_scores.shape[0]):
            if kp_scores[n] <= 0.15:
                continue
            cor_x, cor_y = int(kp_preds[n, 0]), int(kp_preds[n, 1])
            part_line[n] = (cor_x, cor_y)
            cv2.circle(img, (cor_x, cor_y), 4, p_color[n], -1)
            # Now create a mask of logo and create its inverse mask also
            #transparency = max(0, min(1, kp_scores[n]))
            #img = cv2.addWeighted(bg, transparency, img, 1, 0)
        # Draw limbs
        for i, (start_p, end_p) in enumerate(l_pair):
            if start_p in part_line and end_p in part_line:
                start_xy = part_line[start_p]
                end_xy = part_line[end_p]
                cv2.line(img, start_xy, end_xy,
                         line_color[i], (0.5 * (kp_scores[start_p] + kp_scores[end_p])) + 1)
                #transparency = max(
                #    0, min(1, (kp_scores[start_p] + kp_scores[end_p])))
                #img = cv2.addWeighted(bg, transparency, img, 1, 0)
    return img


def get_3rd_point(a, b):
    direct = a - b
    return b + np.array([-direct[1], direct[0]], dtype=np.float32)


def get_dir(src_point, rot_rad):
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)

    src_result = [0, 0]
    src_result[0] = src_point[0] * cs - src_point[1] * sn
    src_result[1] = src_point[0] * sn + src_point[1] * cs

    return src_result